NPS ARCHIVE 1959 LUTKENHOUSE, W.

DIVIDING LINES FOR BACKLASH IN THE PHASE PLANE

WILLIAM J. LUTKENHOUSE

DE NAVAL POSTGE DUATE SCHOOL MONTLEEY, CALIFORNIA

14.

DIVIDING LINES FOR BACKLASH

IN THE PHASE PLANE

* * * * * * *

WILLIAM J. LUTKENHOUSE

.

DIVIDING LINES FOR BACKLASH

IN THE PHASE PLANE

by

William J. Lutkenhouse // Lieutenant, United States Navy

Submitted in partial fulfillment of the requirements for the degree of

.

MASTER OF SCIENCE

ÍN

ELECTRICAL ENGINEERING

United States Naval Postgraduate School

Monterey, California

NPS ARCHIVE 1959 LUTKENHOUSE,W.

DIVIDING LINES FOR BACKLASH

IN THE PHASE PLANE

by

William J. Lutkenhouse

This work is accepted as fulfilling

the thesis requirements for the degree of

MASTER OF SCIENCE

IN

~

ELECTRICAL ENGINEERING

from the

United States Naval Postgraduate School

ABSTRACT

The Mase plane, or displacement versus velocity plane, while relatively new to the engineering field, is particularly suited to furnishing a comprehensive graphical display of nonlinearities operating under certain conditions.

Although a successive phase plane applic tion is required to display a system of order greater than two, a one picture phase plane presentation is adequate for predicting the stability and transient performance of a second order system.

Backlash effects are investigated by phase plane techniques in this thesis.

The writer wishes to express his appreciation to Dr. George J. Theler, without whose assistance and encouragement, this thesis would not have been written.

TABLE OF CONTENTS

.

Section	Title	Page		
1.	Backlash			
2.	Dividing Lines			
3.	Output measured at motor shaft, load having Viscous friction			
4.	Stability			
5.	Output measured at load, load having viscous friction			
6.	Case I: Output measured at motor shaft; unequal distribution of inertia and friction between load and system without load	18		
7.	Case II: Outout measured at motor shaft; load having no viscous friction	29		
8.	Case III: Output measured at load; load having no viscous friction, and system inertia equally distributed	41		
۹.	Case IV: Output measured at load; load having no viscous friction and greater part of inertia	48		
10.	Case V: Output measured at load; load having greater part of viscous friction, and system inertia equally distributed	56		
11.	Case VI: Output measured at load; load having lesser part of viscous friction, and system inertia equally distributed	67		
12.	Case VII:Output measured at load; load having greater part of viscous friction and greater part of inertia	76		
13.	Case VIII: Output measured at load; load having greater part of inertia and lesser part of friction	86		
14.	Conclusions	95		

LIST OF ILLUSTRATIONS

Figure-Table				
1.		Schematic of system with output measured at motor shaft		
2.		Isocline schematic for $N_1 = N_2 = 0$ for combined system and system without load	7	
3.		θ_{L} , θ_{pq} separation for $\theta_{pno} = .5$	10	
4.		θ_{μ} , θ_{m} separation for $\dot{\theta}_{mc} = .2$	11	
5.		θ_{μ} , θ_{m} separation for $\hat{\theta}_{m} = .1$	12	
6.		Criteria of measurement for limit cycle	15	
7.		Schematic of system with output measured at load	16	
8.		$\boldsymbol{\theta}_{\!\scriptscriptstyle \mathcal{M}}$ separation when output measured at load	17	
	1	Isoclines for combined system Case I	19	
	2	Isoclines for system with load separated, Case I	20	
	3	$\theta_{\mathcal{L}}^{}$ $\theta_{_{772}}^{}$ during separation, Case I	22	
	4	$\theta_{m_2}, \theta_{m_3}, \theta_{L}, \theta_{L}, \theta_{e}$ at recombination, Case I	23	
9.		Phase Plane Case I	24	
10.		Transient response of system, Case I	25	
11.		θ_{μ} θ_{m} during separation, Case I	26	
	5	Transient response of system, Case I	27	
	6	Isoclines for combined system, Case II	30	
	7	Isoclines for system with load separated, Case II	31	
	8	Factors of θ_{L} , θ_{m} , during separation, Case II	32	
	9	$\theta_{m}, \theta_{m}, \theta_{o}$ at recombination, Case II	34	
	10	Transient response, Case II	35	

Figure-Table		
12.	$\theta_{\mu} \theta_{m}$ during separation, Case II	37
13.	Phase Plane, Case II step input .16	38
14.	Phase Plane, Case II step input .096	39
15.	Transient response, Case II	40
	ll $\theta_m \stackrel{\bullet}{\theta}_m$ during separation, Case III	42
	12 $\partial_m \dot{\theta}_m$ upon recombination, Case III	43
	13 0 9 upon recombination, Case III	44
16.	$\theta_{\mathcal{L}} = \theta_{\mathcal{M}}$ during separation, Case III	46
17.	Phase Plane, Case III	47
	14 θ_m , $\dot{\theta}_m$ during separation, Case IV	49
	15 θ_m , $\dot{\theta}_m$ at recombination, Case IV	51
	16 Θ_o , $\dot{\Theta}_o$ at recombination, Case IV	52
18.	θ_{L} , θ_{m} during separation, Case IV	54
19.	Phase Plane Case IV	55
	17 Isoclines for combined system, Case V	57
	18 θ_m , $\dot{\theta}_m$, during separation, Case V	59
	19 θ_{L} during separation, Case V	61
	20 θ_m , θ_m , θ_μ θ_μ upon recombination, Case V	62
	21 $\hat{\Theta}_{e}$ upon recombination, Case V	64
20.	θ_{L} θ_{m} during separation, Case V	65
21.	Phase Plane, Case V	66
	22 θ_m , $\dot{\theta}_m$ during separation, Case VI	68
	23 θ_{L} during separation, Case VI	70
	24 Θ_m , Θ_m , Θ_{\perp} , $\dot{\Theta}_{\perp}$ upon recombination, Case VI	71

]

v

Figure-Table Pa				
	25	θ_o upon recombination, Case VI	72	
22.		θ_{m} during separation, Case VI	74	
23.		Phase Plane, Case VI	75	
	26	θ_m , θ_m , θ_{\perp} , $\dot{\theta}_{\perp}$ during separation, Case VII	78	
	27	θ_m , $\dot{\theta}_m$, θ_{\perp} , $\dot{\theta}_{\perp}$ upon recombination, Case VII	81	
	28	$\hat{\theta}_{e}$ upon recombination, Case VII	82	
24.		Θ_{L} , Θ_{m} during separation, Case VII	84	
25.		Phase Plane, Case VII	85	
	29	θ_{m} , σ_{L} , $\overset{\circ}{\theta}_{L}$ during separation, Case VIII	88	
	30	θ_m , θ_m , θ_{μ} , θ_{μ} , θ_{μ} upon recombination, Case VIII	90	
	31	$\dot{\Theta}_o$ upon recombination, Case VIII	91	
26.		$\theta_{_{\!$	93	
27.		Phase Plane, Case VIII	94	
28.		Example of typical by $\dot{\theta}_{\chi}$, θ_{σ} $\dot{\theta}_{\rho}$ dividing lines	96	
29.		θ_{L} , θ_{J} , θ_{σ} , θ_{σ} dividing lines as in Case VIII	97	
30.		Example of typical $\theta_m \partial_m$ dividing line	97	
31.		Limit Cycle versus FL/ _{Fo} ratio	100	
32.		Limit Cycle versus JL $/_{ m Jm}$ ratio	101	

.

vi

1. Backlash

Backlash is a real engineering problem. It exists in all gear trains to a greater or lesser extent and in multiple gear arrangements, is the sum of the backlash errors of the individual gears. Dependent upon where the servo mechanism error is measured, backlash contributes either to the steady state error, or instability of the system. Backlash is not always detrimental to system performance for when controlled, can be used to introduce a slight "dither" to a system, which may be used to provide good lubrication and freedom from stictional effects.

The second order system consisting of motor and load is treated as two linear systems operating sequentially (a) during the period when the backlash is taken up and the load is being driven by the motor and (o) when the load is drifting separately in the backlash region with the motor being controlled by an error signal generated from output measured at either load shaft or motor shaft. Both locations of output measurement are considered.

2. Dividing Lines

System response may be predicted on the phase plane by the loci of four dividing lines in conjunction with system isoclines: (a) system separation line (b) velocity and displacement of system without load at time of recombination (c) velocity and displacement of load at time of recombination (d) velocity and displacement of recombined system after momentum conservation conditions have been satisfied.

This study treats all recombinations as being inelastic.

when an error exists in a system, and the system is correcting with the backlash taken up, a decelerating torque must eventually be applied to the motor. At some time afterward, providing viscous friction is not infinite at the load, and that coulomb friction of load can be neglected, the velocities of the motor and load become different, mechanical contact is lost and separation occurs. This line of separation is a straight line consisting of that isocline or constant slope line at which the load trajectory and the trajectory of the system with load removed, have a common slope. It may be called the "Separation dividing line". Past the separation dividing line, the system operates in the backlash region during which time the load drifts separately, with undiminished velocity if its viscous friction is negligible or with a constant deceleration presuming all friction is viscous. The remainder of the system acts as a stable system with decreased inertia and spirals in towards a stable focus if system output is measured at motor shaft. If the system output is measured at the drifting load, the system does not behave stably in the backlash region but continues to drive in the reverse direction until the backlash has taken up and system output completely

corrected as to displacement. From this it may be seen that when the system output is measured at the drifting load, backlash between motor and load may make an overdamped system oscillatory.

The initial position of system velocity and displacement on the separation dividing line determines two points on the phase plane, load velocity and displacement at instant of recombination, and system without load velocity and displacement at instant of recombination. The loci of these two points constitute dividing lines listed in (b) and (c) above. Each pair of corresponding points for load and system without load, velocity and displacement at recombination, in turn determine a point on the locus for recombined system velocity and displacement. This final point is obtained from satisfying the conservation of momentum considerations where individual momentums are defined for load and system without load. Trajectories for the recombined system originate from this final dividing line and the system retains its original characteristics until the next separation dividing line is reached, after which, separation and recombination occur as in the previous half cycle.

If in response to a step displacement, the system attains a quiescent condition, with or without steady state displacement error, the system is said to be stable.

If the final state of the system is one of a constant amplitude oscillation, the system is said to have a limit cycle. The magnitude of this limit cycle may be determined by any of the possible non linearities of the system, dead zone, etc. but in this thesis, only limit cycles resulting from backlash are considered.

3. Output measured at motor shaft, load having viscous friction.

Consider first, the system in which the output measuring device is mounted on the motor shaft. The backlash existing in the gear train between motor and load is outside of the feedback loop as shown in "Fig.l". The closed loop is completely linear. Ultimate stability with a steady state displacement error less than or equal to the amount of the backlash is the result. The drifting load can at most store energy and since the load does not determine the output measurement, it does not demand more power from the source than is required. The combined viscous friction of the load and the system without load represent energy dissipations which insure stability.

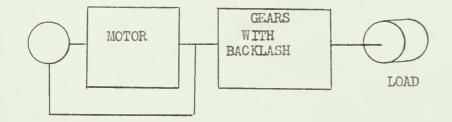


Figure (1)

When the backlash is taken up, the differential equations for the system are:

$$(1) \frac{1}{N} \left(N \int_{-\infty}^{2} dm + \int_{-\infty}^{2} \right) \hat{\theta}_{o} + \frac{1}{N} \left(N fm + f_{L} \right) \hat{\theta}_{o} = T$$

(2) T = K, I

$$(3) \quad V = RI + K_2 \Theta_m$$

$$(4) I = \left(\frac{V}{R} - \frac{K_2}{R}N\theta_{\circ}\right)$$

$$(5) V = K_3(\Theta_R - \Theta_o)$$

(6)
$$\frac{1}{N} \left(N^2 \int_m + \int_L \right) \Theta_0 + \frac{1}{N} \left(N_{fm}^2 + f_L + \frac{K_i K_2 N^*}{R} \right) \Theta_0$$

+ $\frac{K_i K_3 \Theta_0}{R} = \frac{K_i K_3 \Theta_R}{R}$

Where

 $K_{1} = \text{motor torque constant } \underbrace{ft. lbs.}_{amp.} \qquad M_{m} + \underbrace{K_{1}K_{2}}_{R} = \text{friction of system} \\ K_{2} = \text{motor generator constant } \underbrace{volts}_{rad./sec.} \qquad = \int_{rm} \\ without load \\ K_{3} = \text{error measurement constant } \underbrace{volts}_{Pad.} \qquad \underbrace{K_{1}K_{3}}_{R} = K \\ R = \text{armature resistance} \\ N = \text{gear ratio} \qquad \underbrace{rad. \text{motor}}_{rad. \text{output}} \qquad \underbrace{f_{L}}_{R} = F_{L} \\ J_{m} = \text{inertia of system} \qquad \underbrace{ft. lbs.}_{rad./sec.} \\ \Theta_{R} = \text{ordered displacement} \qquad \Theta_{L} = \text{displacement of load} \\ \Theta_{o} = \text{displacement of combined system} \qquad \Theta_{m} = \text{displacement of system without load} \\ \end{array}$

Letting \mathcal{N} =1 $\Theta_{\mathcal{R}}$ =1

From equation (6), to obtain the equation for the isoclines of the combined system:

(7)
$$\vec{\Theta}_{0} + \left(\frac{F_{m} + F_{L}}{J_{m} + J_{L}}\right)\vec{\Theta}_{0} = \left(\frac{K}{J_{m} + J_{L}}\right)\left(1 - \theta_{0}\right)$$

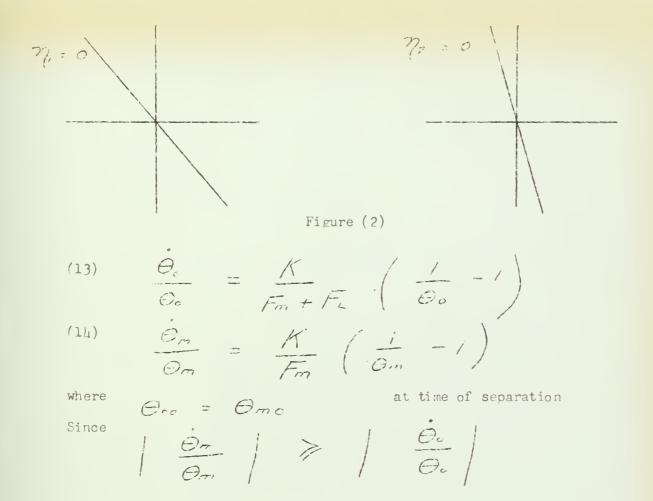
Letting
$$\frac{\ddot{\Theta}_{o}}{\dot{\Theta}_{o}} = \eta_{i} = slope of trajectory
at isochine
(3) $\Theta_{c} = 1 - \tilde{\Theta}_{o} \left(\frac{\eta_{i}}{1} + \frac{Fm + FL}{Jm + JL}\right)$
 $\frac{K}{K} \int m + JL$$$

When the system with load removed constitutes a closed system, an equation for the isoclines may be written as follows:

(9) Jon
$$\Theta_m + F_m \Theta_m = K(I - \Theta_m)$$

(10)
$$\Theta m = 1 - \Theta m \left(\frac{7}{2} + \frac{Fm}{Jm} \right)$$

where $\frac{7}{2} = \frac{\Theta m}{\Theta m}$


Under deceleration conditions, when the velocity of the system without load is equal to the velocity of the load drifting separately, separation occurs and the backlash becomes operative. The isocline for the drifting load is determined by the friction and inertia of the load.

(11)
$$\int_{L} \dot{\Theta}_{L} + F_{L} \dot{\Theta}_{L} = 0$$

$$(12) \quad \frac{\Theta_L}{\Theta_L} = -\frac{F_L}{J_L} = \frac{7}{3}$$

To prove that the system remains combined until it reaches the isocline of the system without load which has the same slope as the load trajectory. consider the following, assuming that $\frac{7}{2} = \frac{7}{2} = 0$ as shown in "Fig. 2":

ų,

if separation is attempted when γ_{r} for the combined system isocline is equal to γ_{3} for the drifting load, the motor will accelerate, keeping the system combined until γ_{2} for the system without load is common with γ_{3} of the drifting load.

To find the loci for the dividing lines: (a) system without load velocity and displacement at recombination, (b) load velocity and displacement at time of recombination, the equations of the individual systems are solved as linear equations, using initial conditions determined from G_{a} \dot{G} on the separation dividing lines, and final conditions determined by the amount of backlash to be taken up.

For the combined system:

(15) $(J_m + J_L) \tilde{\Theta}_L + (F_m + F_L) \tilde{\Theta}_0 + K \tilde{\Theta}_0 = K \tilde{\Theta}_R$

For the system with load removed:

For the load drifting separately

(17) $\int_{L} \dot{\Theta}_{L} + F_{L} \dot{\Theta}_{L} = 0$

At separation

 $\Theta_{mo} = \Theta_{io} = \Theta_{oo} = \text{displacement of system with/without}$

 $\dot{\Theta}_{mc} = \dot{\Theta}_{co} = \dot{\Theta}_{co} =$ velocity of system with/without load

Putting these conditions into the system with load removed and solving yields:

(18)
$$\Theta_m \left(\begin{array}{c} s \\ + \end{array} \right)^2 + \frac{F_m}{J_m} s + \frac{K}{J_m} \right) = \frac{K \Theta_R}{s} + s \Theta_m \sigma$$

+ $\frac{F_m}{J_m} \Theta_m \sigma + \Theta_m \sigma$
Since the isoclines are straight lines, $\frac{G_m \sigma}{\Theta_m \sigma} = \overline{f_{am}} \phi$
 $\Theta_m \sigma^- \Theta_n^-$

where β is the angle the common load, system without load isocline makes with the positive $\Theta_e > \Theta_R$ axis. Θ_{mo} may be expressed in terms of $\hat{\Theta}_{max}$ as

(19)
$$\Theta_{mo} = \Theta_R + \frac{\Theta_{mo}}{T_{an} \phi}$$

Equation (18) then reduces to

(20)
$$\Theta_{m} = \frac{K\Theta_{R}}{s\left(s^{2} + \frac{F_{m}}{J_{m}}s + \frac{K}{J_{m}}\right)} + \left(\Theta_{R} + \frac{\Theta_{mc}}{Tang}\right)\left(s + \frac{F_{m}}{J_{m}}\right) + \dot{\Theta}_{mo}} \frac{s\left(s^{2} + \frac{F_{m}}{J_{m}}s + \frac{K}{J_{m}}\right)}{\left(s^{2} + \frac{F_{m}}{J_{m}}s + \frac{K}{J_{m}}\right)}$$
(21)
$$\Theta_{m} = \frac{K\Theta_{R}}{\left(s^{2} + \frac{F_{m}}{J_{m}}s + \frac{K}{J_{m}}\right)} + \frac{s\left(\Theta_{R} + \frac{\Theta_{mo}}{Tang}\right)\left(s + \frac{F_{m}}{J_{m}}\right) + s\left(\Theta_{mo}\right)}{\left(s^{2} + \frac{F_{m}}{J_{m}}s + \frac{K}{J_{m}}\right)}$$

For the load only, imposing initial conditions yields:

(22)
$$\Theta_{L} = \left(\Theta_{R} + \frac{\Theta_{Lo}}{Tanp}\right) \left(S + \frac{F_{L}}{J_{L}}\right) + \Theta_{Lo}$$

(23) $\Theta_{L} = \Theta_{Lo}$
 $\left(S + \frac{F_{L}}{J_{L}}\right)$

When recombination occurs, neglecting elastic bounce of gear teeth, $\Theta_{\mathcal{P}}$ and $\dot{\Theta}_{\mathcal{L}}$ change instantaneously in accordance with the law of conservation of momentum, to satisfy the following equation:

 $(24) \left(\int m + \int_{L} \right) \dot{\Theta}_{0} = \int m \dot{\Theta}_{m} + \int_{L} \dot{\Theta}_{L}$

The loci of the divicing lines for Θ_m , Θ_m , Θ_L , Θ_L ,

at recombination are obtained as follows: Equations (20) and (22) are solved as a function of time and plotted with an arbitrary ordinate scale, for example let 1 in. ordinate displacement = 1 rad., as in "Fig. 3", which is representative of any system where backlash is outside the feedback loop.

00, O.

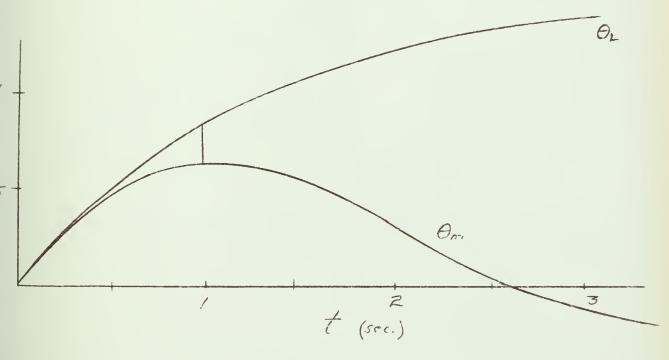
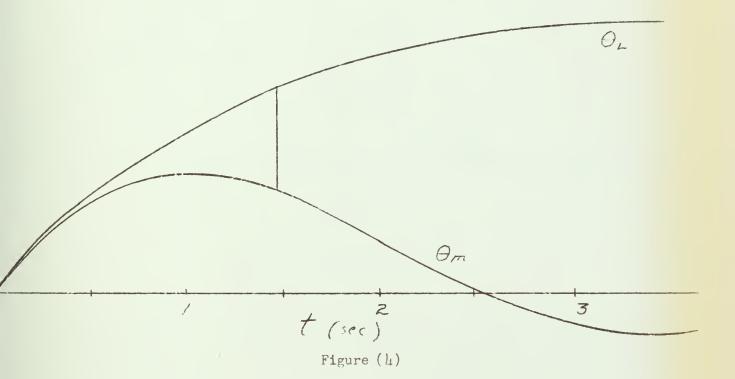



Figure (3)

To find time (t) at which .2 rad. backlash is taken up given an initial $\Theta_{\rm AC}$ = .5, proceed as follows: Since above figure was condition of $\hat{\Theta}_{40}$ as a parameter with 1 rad. = 1 in., let plotted using ordinate = scale of 1 rad = 2 in. = $\frac{1}{.5}$. .2 rad. backlash repre-Wit' dividers, fit .4 in. to time (t) for recombination. (t) is found to be .95 sec

To find time (t) at which . 2 rad. backlash is taken up given an initial condition of $\Theta_{co} = .2$, let ordinate scale be 1 rad. = 5 in. or 1 in. = . ? rad. Backlash of .? rad is now equal to 1 in. With dividers fit 1 in. between Θ_{c} and Θ_{m} , read (t) on abcissa equal to 1.45 sec.

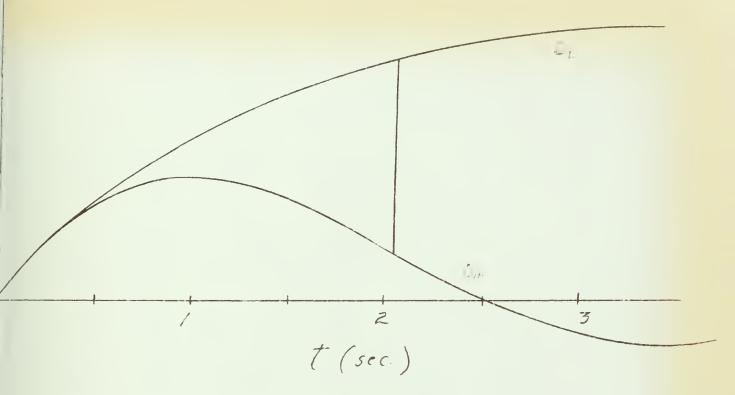


Figure (5)

To find time (t) at which . 2 rad backlash is taken up given an initial condition of $\dot{G}_{Lc} = .1$, let ordinate scale be 1 rad. = 1) in. or 1 in. = .1 rad. Backlash of . 2 rad is now equal to 2 in. with dividers fit 2 in. between \dot{G}_{L} and $\dot{\Box}_{m}$, read (t) on abcissa at 2.05 sec.

Complete loci of dividing lines are obtained by substituting values of (t) obtained from initial conditions of Θ_{LO} , into equations (20), (21), (??), and (23). Resulting values of Θ_{D2} , Θ_{D2} , Θ_{D2} , Θ_{L} , Θ_{L} are then plotted on the phase plane. Θ_{O} and Θ_{O} are obtained by substituting values of Θ_{D2} , from equations (21) and (23) into equation (?4), for corresponding times.

In the case where output is measured at the motor shaft, upon recombination is equal to the displacement of \mathcal{O}_m . When system output is measured at the load, \mathcal{O}_o upon recombination is equal to the displacement of \mathcal{O}_o .

4. Stability

A spot check of stability may be made at any particular recombination point by treating the phase plane trajectories as logarithmic spirals with transformations as follow:

For the combined system let
$$\int_{m} + \int_{L} = \int_{r} f_{m} + F_{L} = F$$

(25) $\int \dot{G_{o}} + F \dot{\Theta_{o}} + K \Theta_{o} = K \Theta_{R}$
(26) $\frac{\ddot{G_{o}}}{\dot{\Theta_{o}}} = \frac{K \Theta_{R} - K \Theta_{o}}{J} - \frac{F}{J}$
(27) $Le + \dot{\Theta_{o}} = 4 (\Theta_{R} - \Theta_{o})$
(28) $d \dot{\Theta_{o}} = (\Theta_{R} - \Theta_{o}) d4 - 4 d \Theta_{o}$
(29) $(\Theta_{R} - \Theta_{o}) d4 = 4 + \frac{K}{M} - \frac{F}{J}$
(30) $\int \frac{d \Theta_{o}}{(\Theta_{R} - \Theta_{o})} = \int \frac{4 d4}{4^{2} - F/J_{4}} + \frac{K}{J} J$
(31) $- I_{R} (\Theta_{R} - \Theta_{o}) = \int \frac{4 d4}{(4 - \frac{F}{2}J)^{2} + (K_{J} - \frac{F^{2}}{4}J^{2})}$
(32) $Let (4 - \frac{F}{2}J) = \sqrt{K_{J} - \frac{F^{2}}{4}J^{2}} \sec^{2} Z dZ}$
(34) $- I_{R} (\Theta_{R} - \Theta_{o}) = \int \frac{(\sqrt{K_{J} - \frac{F^{2}}{4}J^{2}} \sec^{2} Z dZ)}{(\frac{K}{J} - \frac{F^{2}}{4}J^{2}} \sec^{2} Z dZ}$
 $= I_{R} \cos Z + \frac{F}{2}J = \sqrt{K_{J} - \frac{F^{2}}{4}J^{2}} \sqrt{\frac{K}{J} - \frac{F^{2}}{4}J^{2}}$

 $(35) \quad \cos Z = \sqrt{\frac{K_{IJ} - F_{IJ}^{2} + J^{2}}{u^{2} - F_{IJ}^{2} u + K_{IJ}^{2}}}$ $(36) - \ln(\Theta_{R} - \Theta_{o}) = -\ln \sqrt{\frac{K_{IJ} - F_{I4}^{2} + K_{IJ}^{2}}{u^{2} - F_{IJ}^{2} u + K_{IJ}^{2}}}$ $+ \frac{F_{I2}J}{\sqrt{\frac{K_{IJ} - F_{2}^{2}}{4 J^{2}}}} \quad arc \tan u - F_{I2}J + C}$ $\sqrt{\frac{K_{IJ} - F_{2}^{2}}{4 J^{2}}} \quad \sqrt{\frac{K_{IJ} - F_{2}^{2}}{4 J^{2}}}$ $(37) \quad \dot{\Theta}_{o}^{2} - \frac{F_{IJ}\dot{\Theta}_{o}}{(\Theta_{R} - \Theta_{o})} + \frac{K_{IJ}}{(\Theta_{R} - \Theta_{o})^{2}}$ $= \left(\frac{2(\frac{K_{IJ}}{J} - \frac{F_{2}^{2}}{4 J^{2}})}{\sqrt{\frac{K_{IJ} - F_{2}^{2}}{4 J^{2}}}}\right) = \sqrt{\frac{-F_{ZJ}}{\sqrt{K_{IJ} - F_{2}^{2}}}}$

To determine if a particular recombination point on a trajectory is approaching stability (i.e., the recombined trajectory is closer to the stable focus than prior to separation), it is necessary to compare values of C obtained from the coordinates of the trajectory where separation occurs and from the coordinates, where recombination occurs, the conservation of momentum criteria having been first satisfied.

$$(38) C = \left(\sqrt{\frac{\dot{\Theta}_{o}^{2} - F_{J} \dot{\Theta}_{o} (\Theta_{R} - \Theta_{o}) + K_{J} (\Theta_{R} - \Theta_{o})^{2}}{K_{J} - F_{J}^{2} 4J^{2}} \right) \\ \cdot \left(\frac{F_{ZJ}}{K_{J} - F_{J}^{2}} arctan \dot{\Theta}_{o} - F_{ZJ} (\Theta_{R} - \Theta_{o})}{\sqrt{K_{J} - F_{J}^{2}} (\Theta_{R} - \Theta_{o}) \sqrt{K_{J} - F_{J}^{2}}} \right) \\ \in \left(\frac{F_{ZJ}}{\Phi} arctan \dot{\Theta}_{o} - F_{ZJ} (\Theta_{R} - \Theta_{o})}{\sqrt{K_{J} - F_{J}^{2}}} \right)$$

If $C(\Theta_{c_{c_{c_{c}}}})$ recombined $\sum C(\Theta_{c_{c_{c}}})$ unseparated, the trajectory will diverge into a limit cycle. This comparison of values of C is illustrated in Fig. 6. This method is applied to test limit cycles developed in cases III and IV.

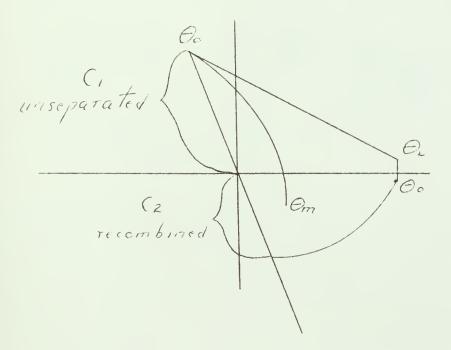


Figure (6)

5. Output measured at load, load having viscous friction.

When the backlash is placed inside the feedback loop, i.e., when the output is measured at the load, the configuration of the system is as illustrated in Fig. 7.

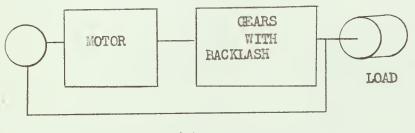


Figure (7)

In the combined region, behavior of the system is identical to that of the system described in section three; however, the system with load removed, as it is when in the backlash region, is no longer a closed system. The system with load removed is driven open loop and attempts to correct . the error as usual. It is prevented from doing so by the existence of backlash. In this attempt, the inertia of the system with load removed develops a momentum which in an underdamped system always causes instability and a consequent limit cycle, but for the presence of coulomb friction. Equation (9) reduces to

(39) $\int_{m} \Theta_{m} + F_{m} \Theta_{m} = K \left(\Theta_{R} - \Theta_{L}\right)$ Since from equation (22), Θ_{L} in La Place form is equal to $\left(\Theta_{R} + \frac{\Theta_{LO}}{Tan \phi}\right) \left(S + \frac{F_{L}}{J_{L}}\right) + \frac{\Theta_{LO}}{S} + \frac{S(S + \frac{F_{L}}{J_{L}})}{S(S + \frac{F_{L}}{J_{L}})}$

equation (20) is reduced to

.

(10)
$$\Theta_{m} = \frac{K/J_{m}\left(-\frac{\Theta_{mo}}{T_{en}\phi}\right)}{s^{2}\left(s+F_{m}/J_{m}\right)} - \frac{K/J_{m}\Theta_{mo}}{s^{2}\left(s+F_{m}/J_{m}\right)\left(s+F_{e}/J_{e}\right)}$$

$$+ \frac{\Theta_{mo}}{s\left(s+F_{m}/J_{m}\right)} + \frac{1+\Theta_{mo}}{T_{en}\phi}$$
(11)
$$\Theta_{m} = \frac{K/J_{m}\left(-\Theta_{mo}\right)}{T_{en}\phi} - \frac{K/J_{m}\Theta_{mo}}{s\left(s+F_{m}/J_{m}\right)} + \frac{\Theta_{mo}}{s\left(s+F_{m}/J_{m}\right)}$$

Since the system with load removed is not suitable for the isocline method, a time solution of equations (h_0) and (h_1) is required.

A plot of t versus Θ_m and Θ_c result in a graph similar to Fig. 8 and is used as previously described in section three to give values of (t) for computation of Θ_m , $\dot{\Theta}_m$, $\Theta_{L_j}\dot{\Theta}_{L_j}$, Θ_o , $\dot{\Theta}_o$ dividing lines.

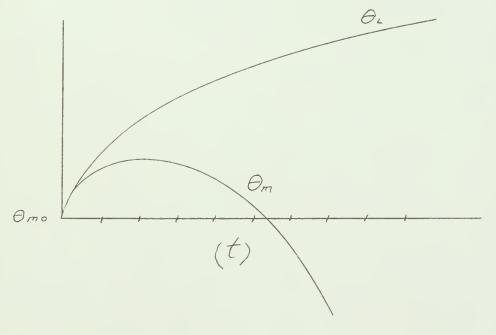


Figure (8)

6. Case I. Output measured at motor shaft.

Given system

Combined

(42) $/\ddot{\Theta_o} + .8\dot{\Theta_o} + \Theta_o = /$ System with load separated (43) $.6\ddot{\Theta_m} + .48\dot{\Theta_m} + \Theta_m = /$ Load (44) $.4\ddot{\Theta_L} + .32\dot{\Theta_L} = 0$ Backlash .2 rad.Isocline at which load separates from system is determined from load equation. (45) $\frac{\dot{\Theta_L}}{\dot{\Theta_L}} = \frac{7}{3} = -\frac{.32}{.4} = -.8$ To find isoclines of combined system letting $\Theta_R = /$ (46) $\frac{7}{.4} + .8 = \frac{/-\Theta_o}{\dot{\Theta_o}}$ Computed values of arctan $\frac{\dot{\Theta_o}}{/-\Theta_o}$ for various values of N. are as listed in table one.

Table (1)

N,

N,	Arctan	$\frac{\Theta_0}{1-\Theta_0}$
1		$1 - \Theta_{o}$

Arctan
$$\frac{\Theta_{\circ}}{1-\Theta_{\circ}}$$

10	- 5.30 °	2	- 59
10		- • C	
7	- 7.31°	3	- 63.4°
5	- 9.78°	5	- 73.3°
3	-14.75°	7	- 84.3
2	-19.65°	8	90
1.5	-23.5°	- 1	78 . 7
1	-29.05 °	- 1.2	68.2
•7	-33.7 °	- 1.5	55 °
.5	-37.6°	- 1.7	48
. 3	-42.25 °	- 2	39.8
.2	-45 °	- 2.5	30.45
.1	-48 °	- 3 '	24.45
0	-51.35°	- 5	13.39
.1	-55 °	- 7	9.15
		-10	6.20

To find isoclines of system with load separated

$$(47) \quad \eta_z + .8 = \frac{1.66(1 - \Theta_m)}{\Theta_m}$$

	$\hat{\Theta}_m$	× ′	ê-
NZ	arctan $\frac{\Theta_m}{I - \Theta_m}$	N2	arctan $\frac{\Theta_m}{I - \Theta_m}$
10	- 7.04°	7	arctan - 85.7
7	- °.7 °	8	- 90
5	- 12.95 °	- l	81.45°
3	- 19.35 °	- 1.5	62 . 3 °
2	- 25.5 °	- 2	48 '
l	- 36.5 °	- 2.5	38.1
1.5	- 30.1°	- 3	31.2
.7	- 41.6°	- 5	17.62
.5	- 45.75 °	- 7	12.13
•3	- 50.45	- 10	8.25
• 2	- 51.13		
.1	- 55.95 °		
0	- 59 °		
1	- 62.3		
2	- 65.8 °		
3	- 69.45 °		
5	- 77.31 °		

20

e

To obtain loci for $\Theta_m \Theta_m, \Theta_n \Theta_n$ dividing lines, it is necessary to solve equations for Θ_m, Θ_n using initial conditions determined from separation dividing line of $\gamma_2 = -.8$ (48) $\Theta_m + .8 \Theta_m + 1.666 \Theta_m = 1.666$

In LaPlace form

(49)
$$\Theta_m = \frac{1.666}{s} \pm 50mo \pm .80mo \pm 0000}{(s^2 \pm .85 \pm 1.666)}$$

Roots of quadratic factor are $-.4 \pm 1.225$

(50)
$$\Theta_{m} = \frac{1666}{s(s \pm .4 \pm .225)} \pm \frac{\Theta_{mo}(s \pm .8) \pm \Theta_{mo}}{(s \pm .4 \pm .225)}$$

(51)
$$\Theta_m = 1 + \frac{\Theta_{mo}}{1.225} e^{-.4t} sin 1.2257$$

(52)
$$\Theta_m = -\frac{\Theta_{mo}}{1.225}e^{-.4t}$$
 sin 1225t + $\Theta_{mo}e^{-.4t}$ cos 1.225t

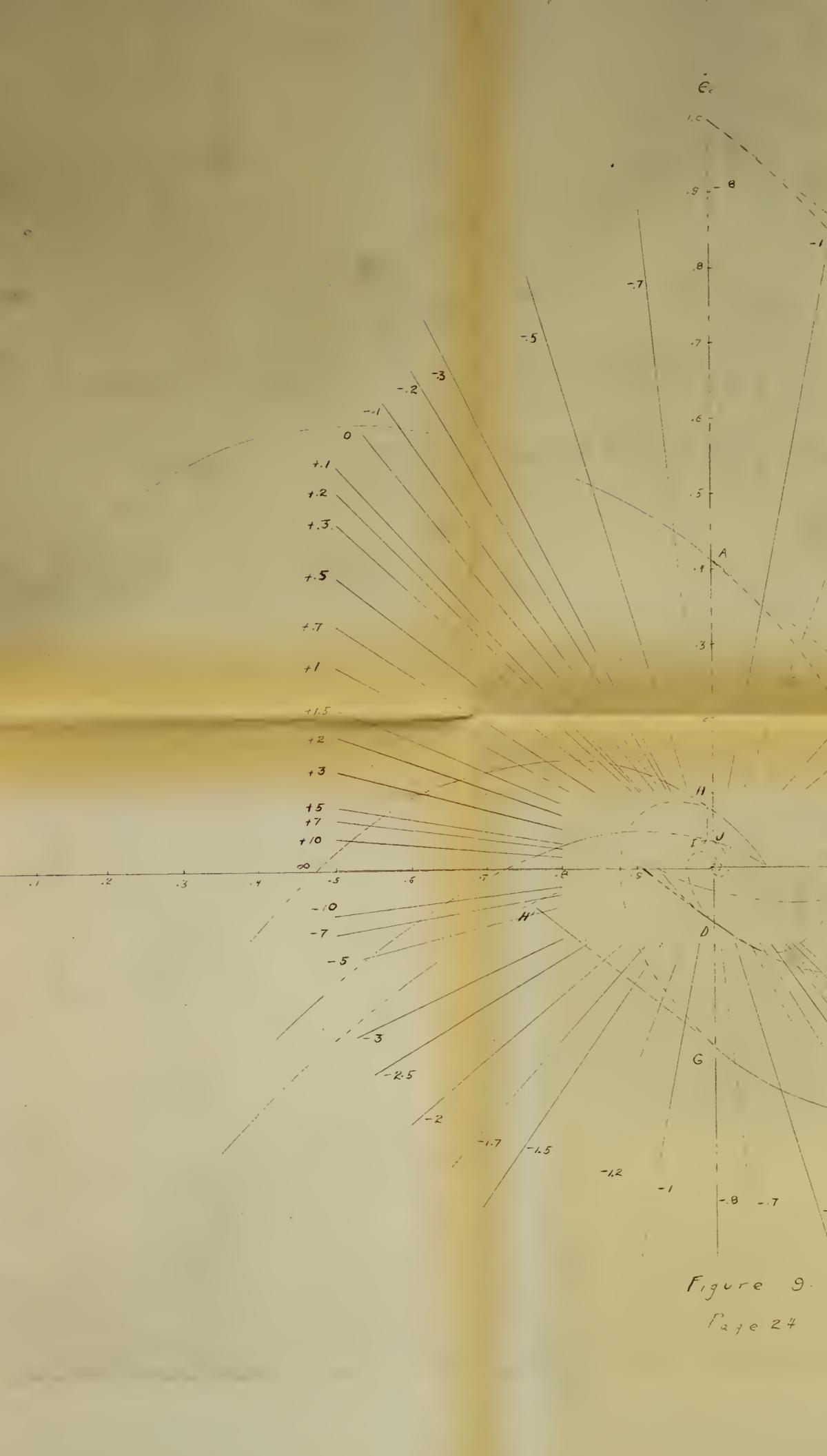
For load separately

In La Place Form

(53)
$$\Theta_{L} = \frac{\Theta_{mo}}{s(s+.B)} + \frac{\Theta_{mo}}{s}$$

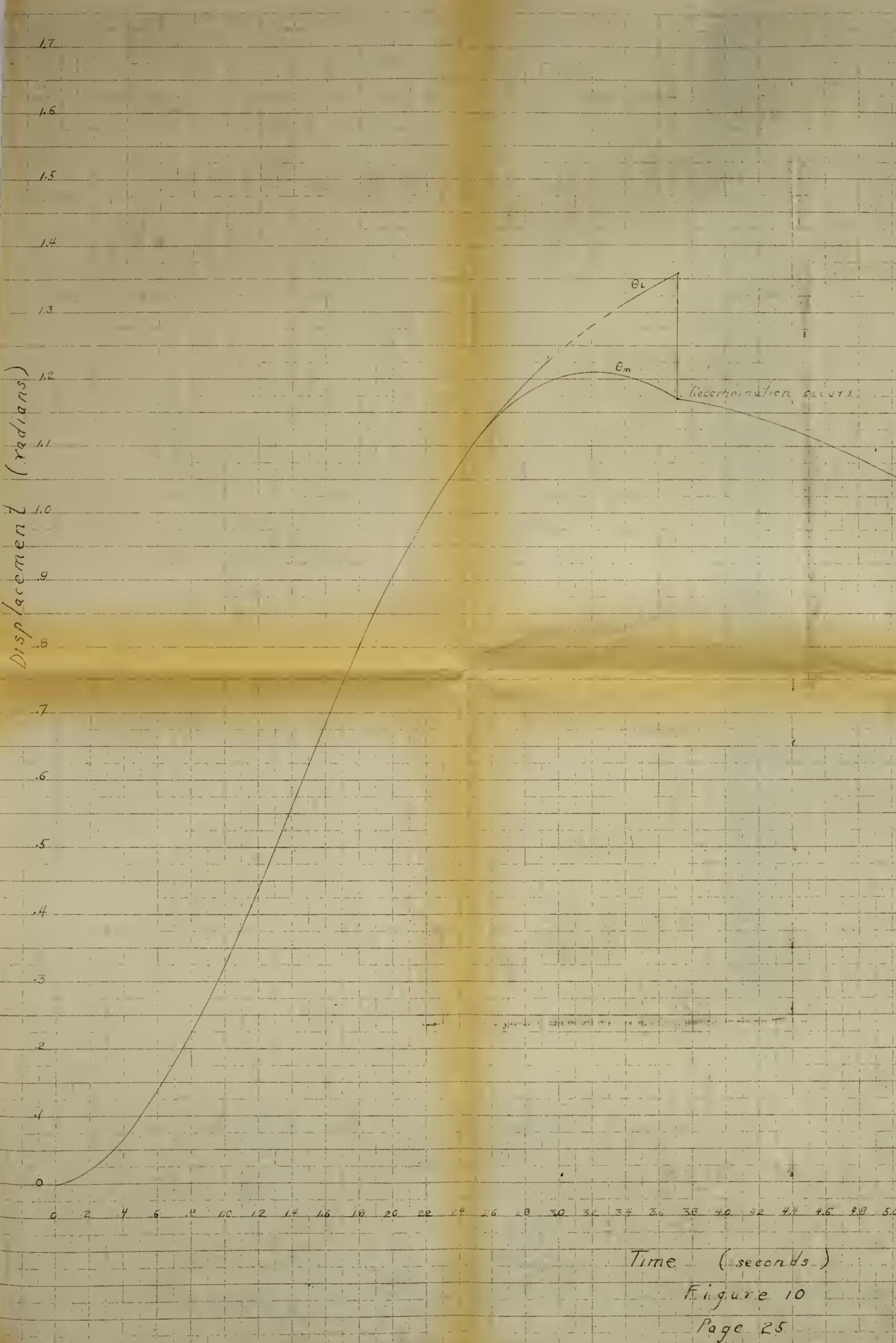
(54)
$$\Theta_{L} = \frac{\Theta_{mo}}{\cdot B} \left(1 - e^{-.BT} \right) + \Theta_{mo}$$

$$(55) \quad \Theta_{\mathcal{L}} = \Theta_{\mathcal{T}_{\mathcal{O}}} e^{-.\Theta_{\mathcal{O}}}$$


Equations (51) and (54) are evaluated at times indicated from factors listed in Table three. These equations are then plotted for $\dot{\Theta}_{mo}$ of .1 to produce a graph similar to Fig. 3., from which values of time for recombination are obtained for various initial values of $\dot{\Theta}_{mo}$.

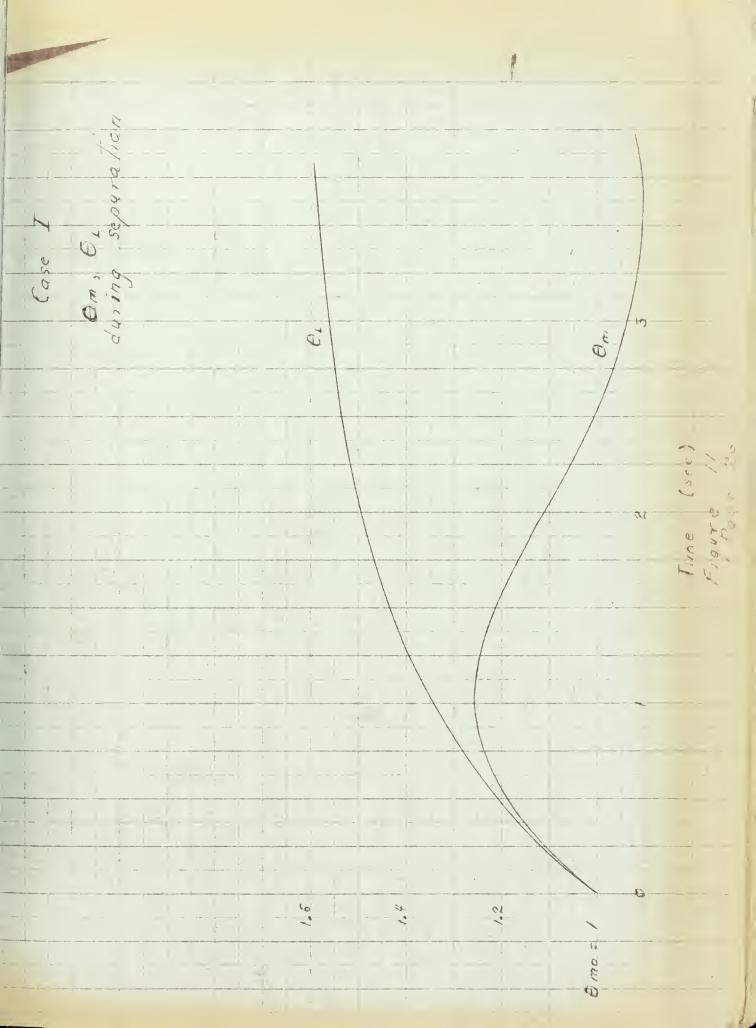
t	sin 1.225t	Table C ^{-,47}	3 e ^{~.8t}	0 m	θL
.1	.1222	.9508	.9232	.0096	.0096
.2	·2425	.9231	. 8545	.0183	.01°3
.4	.4706	.8521	.7260	.0328	.03425
• 4	. 6706	.7866	.6190	.0431	.0476
. 8	.8305	.7260	.5275	.0493	.059
1.0	•9408	.6700	.11500	.0515	.0688
1.2	.9949	.6188	•3 ⁸ 30	.0503	• 077
1.5	.9642	.5400	.3015	.0432	·0 ^R 73
1.4	.8070	.4865	.2370	.0321	.0955
2.0	.6377	.4490	.2020	.0234	.0955
2.2	.4275	.4145	.1720	.0145	.1035
2.3	. 3175	• 3 985	.1590	.0103	.105
2.5	. 2750	.3680	.1355	.0023	.108
2.5	0436	• 3 540	.1250	0013	.1795
2.8	289	.3260	.1063	0077	.1115
3.2	200	.2780	.)770	0159	.1153
3.5	910	.2460	. 7678	01°3	.1175
3.9	9975	.2100	. 0440	0171	.1194

From plotting and scaling as described in section three, it was determined that .2 rad. backlash was taken up at times indicated in Table four corresponding to initial separation values of $\dot{\Theta}_{mc}$ as indicated. Values of $\Theta_m \stackrel{*}{\Theta}_m \Theta_{\mathcal{L}} \stackrel{*}{\Theta}_{\mathcal{L}}$ were obtained from substitution of values of $\stackrel{*}{\Theta}_{mc}$ and t, in equations (51) (52), (54) and (55). Values of $\stackrel{*}{\Theta}_{o}$ were obtained from substituting values of $\stackrel{*}{\Theta}_m$ and $\stackrel{*}{\Theta}_{\mathcal{L}}$ into equation (24).


			Table	4		
.9 •9	<i>t</i> 1.1	0m 1.460	<i>Om</i> 0594	<i>OL</i> 1.660	Θ ₂ .372	ė. recombined .1150
.8	1.175	1.406	0945	1.607	.3135	. 2648
•7	1.23	1.348	1114	1.548	.262	.0379
.5	1.32	1.288	1304	1.489	.208	.0055
•5	1.44	1.226	1417	1.426	.159	+. 0213
•4	1.59	1.161	1422	1.360	.112	0405
• 3	1.825	1.080	1264	1.289	.)697	0331
• 2	2.35	1.013	0812	1.213	.0298	0368
.13	2.7	0605	0195	1.1436	.0151	 7057

Dividing lines were plotted on the plase plane of the system shown in Fig. 9. Phase trajectories were formed by standard phase plane technioues. The transient response of the system as obtained from the phase plane by methods outlined in Control System Synthesis by Truxal, page 629, is shown in Fig. 10. Values of displacement versus time for transient response are listed in Table five.

-1.5 Case I O. vs O. Compined System +.860 + Ec = 1 1Ëc Syster with Le & Separated 6 Em + . 48 Em + Em = 1 Lead . 4 EL + . 32 EL = C Backlash . 2 rid Response la step of 1, 160 ∞ É Separation Line Load from system Velouity and displacement of system with +10 +7 15 Lood separated immediately pries B te recombination Velocity and displacement of system upon recombination Displacement and velocity drifting Load during separation $\pm .7$ Displacement and velocity drifting Load immediately price to recombination Combined System - . 5 -.3 Trajectory Trajectory of System with Load separated Numbered Isochines



- 1a manager of the Case 1 Transient Response to unit step input Recombination does not reoccur. E .

1 + 1 store and the star of a star and the 1 1 7 1 1 1 64 66 68 7.9 7.2

Time (seconds_) Figure 10

-		ς	-		~
T	3	5	i k	P	m
- 44	9	0	-	~	

			Table	5		
t .258	<i>0.</i> .026	Θ_m	Θ_{\perp}	t 5.710	<i>Om</i> •9929	<i>O</i> ₂ •9929
. 520	.l			5.810	.986	.986
•759	•2			6.010	•975 ^p	.9747
1.133	•4			6.210	.9681	.9648
1.472	.6			6.410	.9635	.9564
1.805	.8			6.61	.9619	.9491
2.221	1.0					
Separat	ion occur	s at Θ_{10}	.42			
2.321		1.0393	1.0393			
2.421		1.075	1.075			
2.621		1.134	1.14			
3.021		1.202	1.242			
3.221		1.211	1.282			
3.421		1.206	1.315			
3.721		1.177	1.358			
Recombi	nation oc	curs				
4.369	1.130					
4.837	1.08					
5.545	1.01					
5.61	1.00					

Separation occurs at $\dot{\Theta}_{co}$ =.074

From Fig.9 it may be seen that the system as described is stable and contains a residual steady state displacement error \leq the amount of the backlash. A step displacement input of 1.0 is seen to separate

into load and system without load at $\Theta_o = 1$, $\dot{\Theta}_{\perp o} = .h2$, at point A. The load is seen to follow a constant deceleration isocline of -.8 while the system without the load converges towards the stable focus. Recombination occurs when the system without load is at B and the load is at B'. The momentum balance causes the recombined trajectory to originate from point C. Separation reoccurs at point D and recombination does not occur thereafter since the output measuring device is inside the limits of the backlash. The load comes to rest with -.091 rad. residual error.

A step displacement input originating at $\Theta_o = /$, $\Theta_c = 1$ is seen to separate at $\Theta_o = 1$, recombine when the system without load is at E and the load is at E[']. The recombined trajectory is seen to originate from F, reseparate at G, recombine at H, H['], I and separate again at J where the output detector is once again inside the backlash region so that further correction is impossible.

Fig. 10 describes the transient response to a steo displacement input of 1.0 rad. From the figure it may be seen that system resonant frequency changes between combined and uncombined systems, and that velocity changes abruptly upon recombination.

Fig. 11 is a plot of $\Theta_{m_1} \Theta_{\mathcal{L}}$ at separation.

7. Case II. Output measured at motor shaft.

Load possesses no viscous friction.

Given system.

Combined

 $\frac{1}{1} \frac{1}{1} \frac{1}$ (56)

System as closed loop with load separated.

 $(57) \quad \cdot 5 \quad \Theta_m + \mathcal{R} \quad \Theta_m = \mathcal{I}$ Load separately $(58) \cdot 5 \theta_{x} = 0$ 5 Backlash .3 rad. Isocline at which load separates from system is determined by the isocline equation for the load. (58) . $5\theta_{L} + 0\theta_{L} = 0$ $\gamma_{3} = 0$ To find the isoclines for the combined system, letting $\Theta_{\mathcal{P}}$ = 1

$$(59) \quad \gamma_{,} \neq \cdot 2 = \frac{1-0}{\Theta_{o}}$$

Slopes of the isoclines are given in Table six.

n.	arctan <u>é</u> . 1-60	N,	Table 6	\mathcal{N}_{i}	art de
∞	0 °	.2	68.2°	-3	arctan <u>Oc</u> 19.66°
10	- 5.61°	.1	-73.3°	-5	11.77°
7	- 7.91°	0	-78.7°	-7	R.36°
5	-10.9 °	1	-84.3 °	-10	5.83
3	-17.35°	2	- 90 °		
2.5	-20.35°	3	84.3°		
2.0	-24.5°	5	73.3°		
1.5	-30.45°	7	63.4°		
1.2	-35.55°	-1.0	51.35°		
1.0	-39.8°	-1.2	45 °		
.7	-48 °	-1.5	37.6		
- •5	-55	-2.0	29.05 °		
.3	-63.4	-2.5	23.5		

To find isoclines for the system with load separated (60) $n_2 \neq .4 = 2\left(\frac{1-\Theta_m}{\dot{\Theta}_m}\right)$ Slopes of the isoclines are given in Table seven.

Table 7

N_2	arctan <u>Öm</u> 0 1-Om	N2 1	arctan <u>Om</u> -R1.16° 1- Om	
∞				
10	-10.89°	2	-84.3 °	
7	-15.3°	3	- ⁸ 7.15°	
5	-20.33 ~	4	-90	
3	-30.45°	5	87.15 °	
2.5	-34.6 °	7	°1.46 °	
2.0	-3 9 • 8 °	-1.0	73 . 3 °	
1.5	-46.45°	-1.2	68.2 °	
1.2	-51.3	-1.5	61.2	
1.0	-55.0 °	-2.0	51.3°	
.7	-61.2 °	-2.5	43.6	
.5	-65.75	-3.0	37.6	
•3	-70.7	-5.0	23.5	
.2	-73.3 °	-7.0	17.39	
.1	-75.9 °	-1.0	ll.78°	
0	-78.7 °			
To obtair	n dividing lines fo	r Om	$\hat{\Theta}_{TT}, \Theta_L \hat{\Theta}_L, \Theta_c \hat{\Theta}_c$ a	t
recombina	ntion,			
(57)	Om t. 4 Or	n +	$2\Theta_m = R$	
In LaPlac	ce form	,		
(61) 🕤	$m = \frac{75}{15}$	+ (52)	Omo + SEmo +.4 +.4s +2)	0 0 0 0
Roots of	quadratic factor a	are	2 ± j1.4	
(62) . ($S_m = 1 + .7$	715 E	Это e2t sin (1.47	-
where	Ø = 14.	25° 3	1	

 $\phi)$

(63)
$$\Theta_m = -.1430 \ \dot{e}_{max} e^{-.2t} (1.4t-t)$$

+ $\dot{e}_{max} e^{-.2t} (0.4t-t)$

For load separately

(64)

 $\Theta_{L} = \frac{\Theta_{L0}}{5^{2}} + \frac{\Theta_{L0}}{5}$ $\Theta_{L} = \Theta_{L0} + \Theta_{L0}$ (65)

Substituting values of (t) in factors of equation (62) results in values of Table eight.

t	sin(1.4t-q)	Table 8	+	sin(14t-p)	eet
0	284	1	10.0	.917	.1358
.2	008	.9608	11.0	.581	.111
•14	.258	.9231	12.0	725	.091
.6	.524	.887	13.0	824	.1771.3
.8	•739	.852	14.0	.430	.)F1
1.0	. 895	.819	15.0	.972	. 350
1.2	. 983	.7965	16.0	070	. 041
1.4	.999	.756	17.0	997	.0335
1.6	.928	.726	18.0	250	.0274
1.8	.790	. 698	19.0	.976	. 3225
2.0	.588	.670	20.0	.523	. 11.04
3.0	693	.549			
4.0	924	.1110			
5.0	.115	.386			
6.0	.968	.301			
7.0	078	.247			
8.0	005	.202			
9.0	276	.166			
		20			

When the terms of Table eight are plotted in accordance with equations (62) and (65), for $\hat{\mathcal{O}}_{mo}=1$ figure 12 is obtained.

From figure twelve, the times of recombination for .3 rad. backlash are determined for various values of Θ_{mo} as described in section 3, thus describing dividing lines for $\Theta_m \ \Theta_m$, $\Theta_c \ \Theta_c$, $\Theta_c \ \Theta_c$ at recombination. Values determined are as listed in Table nine. Values of $\Theta_m \ \Theta_m$, $\Theta_c \ \Theta_c$ were determined from equations (62), (63) and (65). Θ_c values were determined from equation (24).

t	Orno	Table 9 Om	Om	ė.
1.36	.5	.272	77125	.21/137
1.40	.45	. ?42	0828	.1839
1.49	.40	.2075	1082	.11,59
1.56	• 35	.1745	1157	.1171
1.66	.30	.136	1236	. 0882
1.82	.25	.0970	1297	.0602
2.0	.20	.0560	11946	·01:02
2.3	.1.5	.0135	0953	.0273
2.63	.12	0127)663	.0268
2.95	.10	025	047	.0265
3.22	. 79	02975	0147	.0366
3.63	.08	0275	.0088	. 5444
3.95	.075	01215	.03283	.0534
1.40	. 07	00253	. 3292	.0364
4.95	. 765	. 0050	. 2217	.0434
5.115	.06	.0126	.00726	.0310
4.36	.05	.0075	0111	.0195
7.56	.04	00487	00464	. 7178
R.117	.035	00393	.00438	.01969
17.78	.03	.00249	.00184	.0159
12.7	.025	00118	701327	.011°3
15.1	.02	.00064	000519	.0102

The transient resoonse as determined from the phase plans is tabulated in Table ten.:


```
Table 10
```

For step	displace	ement input	of .16				
t	Θ.	Om	t	0.	Om	+	Θm
0	0		3.1		.226	7.35	.150
.15	.0015		3.3		.214	7.55	.1485
.277	.0053		3.5		.1985	7.75	.148
.417	.0123	Sys	3.7 tem reco	mbines	.1815	7.95	.1492
.583	.024		3.8	.161		8.15	.1494
.762	.040		3.9	.160		8.35	.1514
.998	.066		4.31	.173		8.55	.1538
1.265	.100		4.73	.18		8.75	.1566
1.500	.132		5.33	.184		8.95	.1600
System se		from load a	it5.72	.182			
1.7	Θ_{l}	• = • 137 .16	6.03	.178			
1.9		.1933	6.36	.172			
2.1		.2055	6.55	.168	$\dot{\Theta}_{10} = .$	000	
2.3		.2?17	6.75	rates at	.16		
2.5		.2817	6.95		.156		
2.7		.2356	7.15		.1527		
2.9		.2335					

Figure thirteen is a phase plane portrait of the system when it is subjected to a step in put of .14 rad. The dividing lines are shown to have particularly unusual configurations for this system characterized by no viscous friction in the load, and slight damping. The $\mathcal{O}_{\mathcal{P}_{\mathcal{P}}}$ $\mathcal{O}_{\mathcal{P}_{\mathcal{P}}}$ dividing line is seen to spiral into the stable focus much like a trajectory. The $\mathcal{O}_{\mathcal{O}}$ dividing line for recombination is seen to consist

of a series of loops, the tops of which represent maximum energy fed back from the load upon recombination, and the pottoms of which represent minimum energy fed back. This phenomenon is attributable to the existence of a natural period for separation which permits recombination velocities to add vectorially, increasing the displacement of the system immediately after recombination.

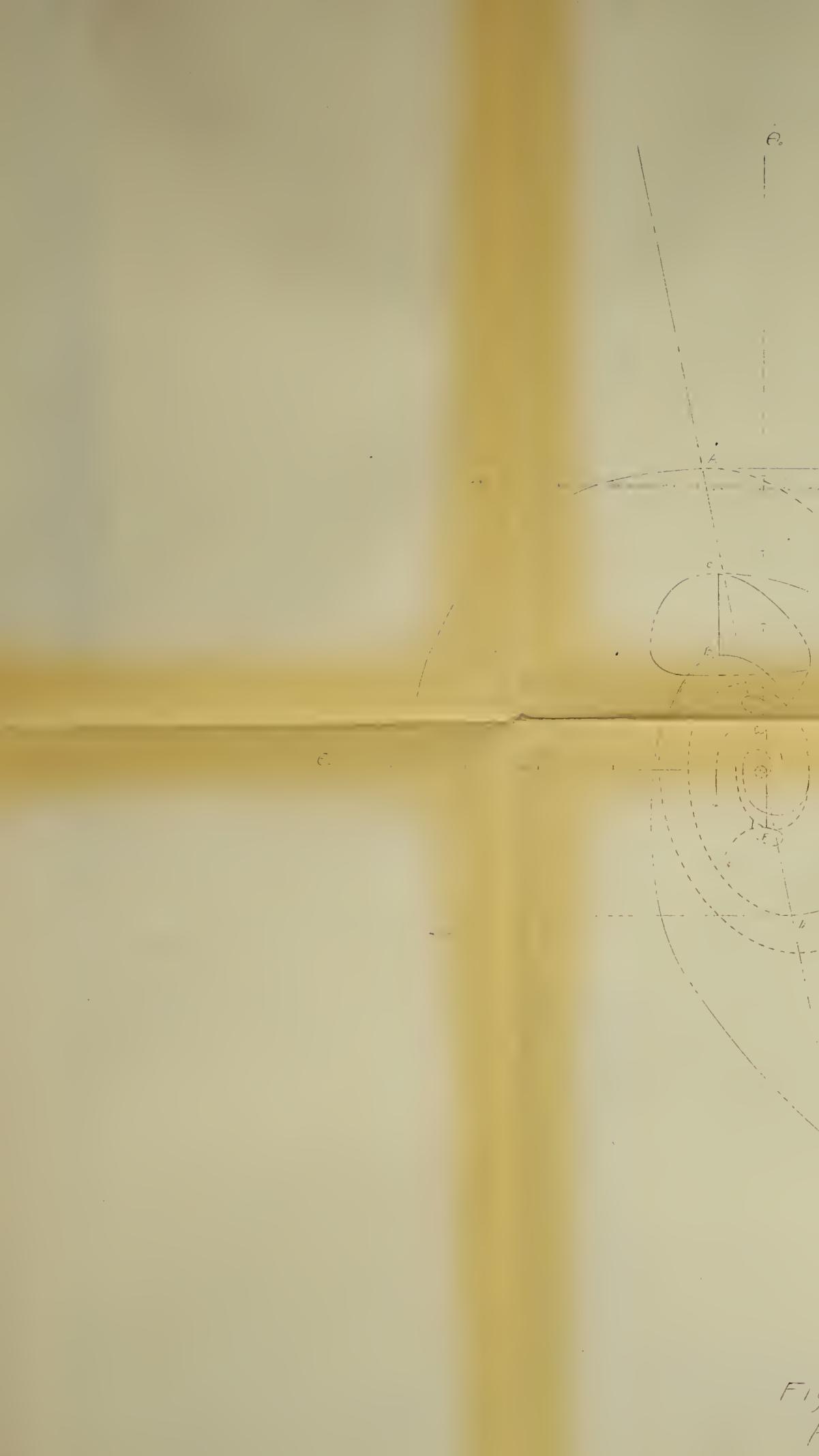
The phase trajectory is seen to separate load from system at point A. Recombination occurs at point B, and the new $\Theta_o \ \Theta_o$ is seen to take place at C, a point of relatively low energy feedback. The system separates again at L and recombines again when Θ_m is at 2. The $\Theta_o \ \Theta_o$ for this recombination occurs at F, again a relatively low energy feedback, and from this convergence, it is seen that $\Theta_o \ \Theta_o$. Loops approade the stable focus, making the system ultimately stable. As in case I, the output error of the system will be the magnitude of the backlash.

Firure fourteen pictures the system behavior in response to a stor input of .09%. From this it may be seen that the \bigcirc , \bigcirc , position upon mecombination is at the top of the first loop, representing a maximum feed-back of energy from the load. The load separates from the system at A, recombines at E to produce a \bigcirc , \bigcirc , for the recombined system at C. The system separates again at L and recombines when \bigcirc , is at ", resulting in a recombined \bigcirc , \bigcirc , at F. As before, it may be been that the system is ultimately stable, however it takes the system a longer period to settle from a step of .0% than from a step of .1%.

Figure fifteen shows the system transient performance to a step of .16 and .096. Once again, this illustrates the more oscillatory performance induced in the system by the smaller input, when conditions are favorable for load momentum reinforcement upon recombination.

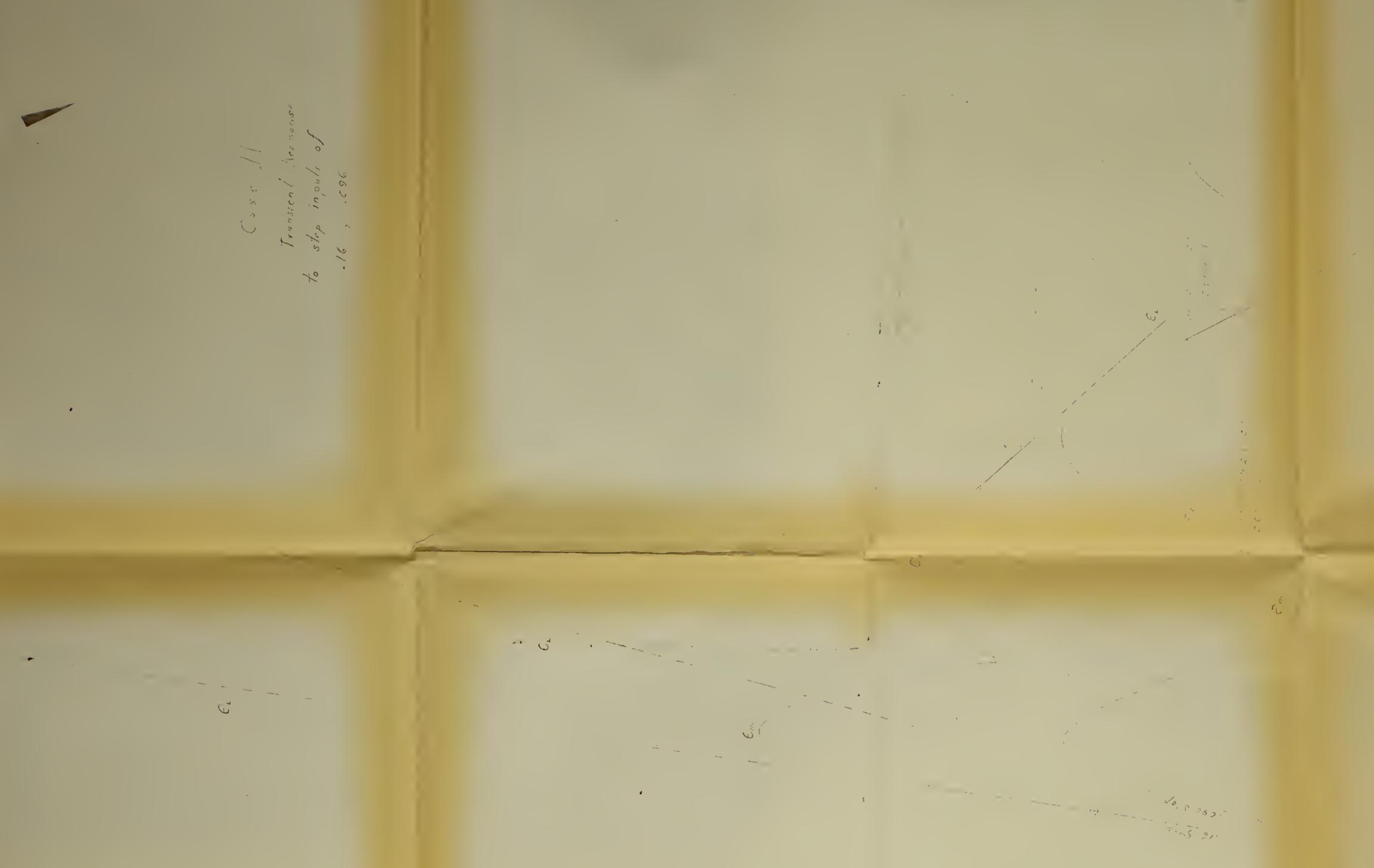
36

		[+ ·			11741	T III	Basa	H	Fitt		HT.		E E E	E E	611	1 1	1	E E U	L. 7			F. F			•		
					1												i.,									11 ;	
-		i.	-	t.,	H P					. t			a subscription	! !			1 = t	L		: .+				-	-		
				tri	P		114	田社			1		E.F.	1 . 42				1							1.01		
	4				A A				1				E .		E.		1.1			-							2
		1	14	1				LIF		TI	1	T	1	+			Hir.			1	11	田		H.H.			
-		E											「日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日									+					The last
		E.E.		L 2' } ‡									43) 1.1.										1,11.				1.5
												1	0								Here.						
				poparine								- AR	_Ĕ.		* 1 {		<u>+: ++_</u> ↓		1-11		L' (Fràn		And and and a			1.	
			1	世		串	4							3		1 + -	ŀ		11-						1		
		⊥ † }	\$ 6 mg	- +									+	. 5	1 .+		++	-					书书			-	
	- *	1 -										00							tt :	正					1 · · ·		
:	- 		1.1.1		UM G							VR 2 MOS	rt														te
		- +1	I.T.T		D		1.1	FŦ				:		1. T	EEEE						€++*E 1,+				1		1
5		1-1-1				+++							TH.						+	-					-		
		-1-1-		1. 1		damara .	particular.	<u> </u>				- S.	- . .			1-1							++++	T	1 · · ·		
		4.4			1,1-1							H		Ta ta	÷+-	1	1		L		11.1.	121	11.	+			
			T_1			1-1-1-1			de la compansa da								112	L	-	a manufacture manufacture	12		240		111	-	-pr
							HT 1	+++ =									1	1. 2		1.3.1 1.3.1 1.3.1							
-	L.	1 4 4 4					ΗĽ.	1 · 1 ·						Lui			-	tar, Triji					hit.		11.1		· · ·
				T-											1	-							1				* * * *
		110							. = _+_ 	tt it		i. Tti			-	-	1 1				E.	-t		再			.Va
	Ti-	14. 		1						117		田					-+		- 11						TF	-	
		T.			<u> </u> 			L.L.						11	L.+ .	-	1.4		17-11	H.							L±1
					D'	1.21													E								
1415																			╡╧┹╼╧ ╿ ╡ ╪┠╍								
											臣臣											¦` †† _† †† ₁ ††			1111		
																		<u>1</u> 년 								: .	
-	 	110		1 .										it.Τ				1. +7		田			+				<u>i</u>
						1.14	1	∓[;+÷	- :11			말문					4	1.7					4				
				H-H-	1 T.				-		1.				<u> </u>	-	3.1			-1.5					· + ·		Ĩ.c.
			田	Г •,Н	EF	罪					1 2		- ± + 1 + +				1 - 1		i i								
														51				1-								7 - +	* + * +
				1 777						and the second s				İΎ		1	1										
	file.							E. TI	LEE				1:11	11++	T.H.		1.	ft						TT I			
								1		+												- minimum		- man			
																							And a long of	free data	afrigada buda		
	-+			J. harrende	1		And to be							Ð.			and an average	1X		11.11					+ ingent	. E.	
																	adari adar para s									1.1.+	
							++++			it:	proticipant and the	FF.L				臣臣				田					and the state of t		
E.+			ŧ.ŧ	+ +					IT E	1										1 in		17 - 1 17 - 1					्र -
	++++++++++++++++++++++++++++++++++++++			睲		112	111	0.	1 - F	同甘			+					F			R.F.						
T	-+	HF.			i - L								-			1					 		T, H				
	1.12			Ē	111							1	, 	+ +				臣							t	 TI -	
	<u> </u>	1 + 1 +	1	1	-	2	<u>t</u>	11 -1		C-F	<u></u>) h-am a 1	<u>H-h</u>	de anne e an	1+1-1	<u>Firsty</u>	1+	4 - L). L 		-	<u>+</u>	plant or other	distant company	10 aprot as to 10		
									c	Z				7									E				


(° c

·

Figure 13 Page 38


 $\chi = \eta$ Case II Contrad Spalen. 1 E. + ... Eo + Eo = 1 System with Load Separated .5 Em + .2 Em + Em = 1 04 - CR .02 . 20 50. . 3 Back lash Load'.5 $\tilde{e}_{L} = 0$ Response to step in put . 16 Separation Line - Lood from System. Velocity and Displacement of uncombined system immediately prior to recombination Velocity and Displacement of system at recombination Load drifting separately Combined system. Trajectory System Trajectory with Load separated Dividing Lines only partially drawn to simplify picture A.

Case II Ée vs Ee Combined System 1 ER 1 Bie ENT ler + 200 + 00 = 1 System with Load separated $.5\ddot{e}_{n}$ + $2\dot{e}_{rn}$ + E_{rr} = 1 Load $.5\dot{e}_{r}$ = 0 $.5\dot{e}_{r}$ = 0 Response to step input .096 - Separation Line -Lead from System Velocity and Displacement of Uncombined System immedicilely prior te recembination Pesition and Velecity of System at recombination Dividing Lines crity portially diawa le simplify picture -¥⊂ Combined System Trajectory System Trajectory with Load Separated Figure 14 Page 39

1

÷ · · · · ·

Displacement (rod)

1

Case III. Utput measured at load.

Load possesses no viscous friction. Inertia distribution is equalized between load and system without load.

Civen system .3 Backlash

Combined.

 $(66) \quad I \quad \Theta_{\circ} \neq R \quad \Theta_{\circ} \neq \Theta_{\circ} = I$

System as open loop with load separated.

 $(67) \quad . \quad 5 \quad \Theta_m \quad + \quad . \quad 2 \quad \Theta_m = 1 - \quad \Theta_L$

Load separately

 $(68) \quad \cdot 5 \quad \Theta_{L} = 0$

Slopes for the isoclines of the combined system are as tabulated in Taole six.Equation (40) and (41) are applicable to system when operating in the backlash region, and reduce to

$$\begin{array}{c} (60) \\ \Theta_{m} = 13.5 \\ \overline{S^{2}} \\ \overline{S^{2}} \\ \end{array} \\ \begin{array}{c} -5 \\ \overline{S^{3}} \\ \overline{S^{3}} \\ \end{array} \\ \begin{array}{c} -31.25 \\ \overline{\Theta_{mo}} \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \end{array} \\ \begin{array}{c} +1 \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \end{array} \\ \begin{array}{c} +1 \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \end{array} \\ \begin{array}{c} +1 \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \end{array} \\ \begin{array}{c} -1 \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \end{array} \\ \begin{array}{c} +1 \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \end{array} \\ \begin{array}{c} +1 \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \end{array} \\ \begin{array}{c} +1 \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \end{array} \\ \begin{array}{c} +1 \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \end{array} \\ \begin{array}{c} +1 \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \end{array} \\ \begin{array}{c} +1 \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \end{array} \\ \begin{array}{c} +1 \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \end{array} \\ \begin{array}{c} +1 \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \overline{S^{5}} \\ \end{array} \\ \begin{array}{c} +1 \\ \overline{S^{5}} \\ \end{array} \\ \begin{array}{c} +1 \\ \overline{S^{5}} \\ \overline{S^{$$

$$\hat{\Theta}_{m} = \frac{13.5}{5} \hat{\Theta}_{m0} - \frac{500}{5^{2}} + \frac{31.25}{(5+.4)} \hat{\Theta}_{m0}$$

(72)
$$\hat{\Theta}_m = 13.5 \hat{\Theta}_{mo} \left(1 - e^{-.4t}\right) + \hat{\Theta}_{mo} e^{-.4t}$$

- $5 \hat{\Theta}_{mo} t$

 $(73) \quad \Theta_{L} = \dot{\Theta}_{Lo} t + \Theta_{Lo}$

Substituting values of (t) in factors of equations (70) and (73) results in data tabulated in Table eleven.

Table ll

t	e4	$t = (1 - e^{-i4})$	4 -2.5	7 135	_+ -3123	52	<u> </u>	13.5		
0	1	0 1	0	0	_+ -3/2; (1-e 0	2	2	(1-6-41)-37	
.2	.923	.077	1	2.7	-2.405	2	005	1.04	-1	.**3
•4	.852	.148	4	5.4	-4.625	2	.175	2	-2	
• ~	.7865	.2135	9	8.1	-4.675	2	325	2.78	-)	+ ²
• R	.726	.274	-1.4	10.79	-P.5E	?	.44	3.7		. 26
1.J	. 470	.330	-2.5	13.5	-10.32	?	.49	4.14	45	.12)
1.2	.619	.381	-3.6	14.2	-11.9	2	.50	5.15	-4	231
1.4	.571	.429	-4.9	1°.9	-13.4	2	.40	5.90	-7	- , ² ?'.
1.6	.522	.1.72	-4.4	21.6	-14.75	2	.25	F.37	- 2	-1.1.1
1.4	.487	.513	- ⁹ .1	24.29	-14.75	2	06	F.92	<u> </u>	-1
2.;	.450	.550	-10	27	-17.2	?	4	7.1.3	-10	-2.10
2.2	.115	.5R5	-12.1	29.7	-1°.3	2	9	7.9	-11	/-
2.1	.383	.417	-14.4	32.4	-19.3	?	-1.5	8.33	-12	=3.1
2.4	.3.4	.646	-16.9	35.1	-20.2	2	-2.2	٩.73	-13	- 3
2.9	.326	.674	-19.6	37.8	-21.03	?	-3.03	9.1	-11	-1- +
۲.0	.3015	. 69.8	-22.5	40.5	-21.8	2	-4.)	9.1.3	-13	2.1
3.2	.278	.722	-25.6	43.2	-22.6	2	-5.2	0.75	-14	
2.	.257	.743	-2 ^R .9	45.0	-23.2	2	-6.4	10.)	-17	- ² . I
3.6	.2375	.7625	-32.4	48.6	-23.8	2	-7.9	10.3	= <u>1</u> .R	-7./3
3.9	.210	.781	-36.1	51.3	-24.1	2	-9.4	10.05	- 1	-1.11
<i>(b</i> .)	.202	. 798	-40	54.0	-24.05	2	-11.15	10.77	-20	-^.)^

. There sixteen is a graph of values tabulated in Table eleven. Then scaled for various values of \hat{O}_{mo} on the Seperation dividing lines, values of (t) are obtained as described in section 3, which are the times required for recombination to occur for a specific \hat{O}_{me} . These values are listed with corresponding values of \hat{e}_{mi} in Table twelve, with factors from equations(70) and (72).

Table 12

Ômo 1	£ .98	e ⁴⁷	(1-e ⁴⁺) .324	-25t ² - 2.4	13.57 13.21	-3125 $(1-e^{-4T})$ -10.12	2 ?	<i>Өт</i> .Ц?	-/
•5	1.27	.602	.398	- 4.045	17.15	-12.42	2	.243	
•1	1.37	.578	.1122	- 4.70	18.5	-13.2	2	.17	
• 3	1.52	.544	.1.56	- 5.77	20.52	-14.2F	2	.087	
.2	1.75	.4965	.5035	- 7.63	23.6	-14.71)	.012	
.1	2.25	.406	. 594	-12.68	30.4	-18.55	2	173	
• 0°	2.41	.391	.619	-14.5	32.52	0.32		1?	
• 74	2.68	.342	.658	-10.0	36.2	-27.55	 ,2	··· • • •	
.04	3.1	.290	.710	-24.0	41.0	-22.20	2	1	
.02	4.0	.202	.798	-40.0	54	-24.0		272	

Table 12 continued

Om	o t	(13.5) $(1-e^{47})$	-5t	Om
	•98	4.375	-4.9	.151
•5	1.27	5.375	-6.35	1865
•4	1.37	5.7	-6.85	2288
•3	1.52	6.16	-7.6	2688
•5	1.75	6.19	-8.75	2927
.1	2.25	8.01	-11.25	2834
.08	2.41	°.35	-12.05	271
.06	2.48	8.88	-13.4	2507
•0h	3.1	9.58	-15.5	225
.02	4.0	10.78	-20.0	180

From equation (24) it is determined that corresponding values of Θ_{\circ} , $\dot{\Theta}_{\circ}$ for recombination are as listed in Table thirteen.

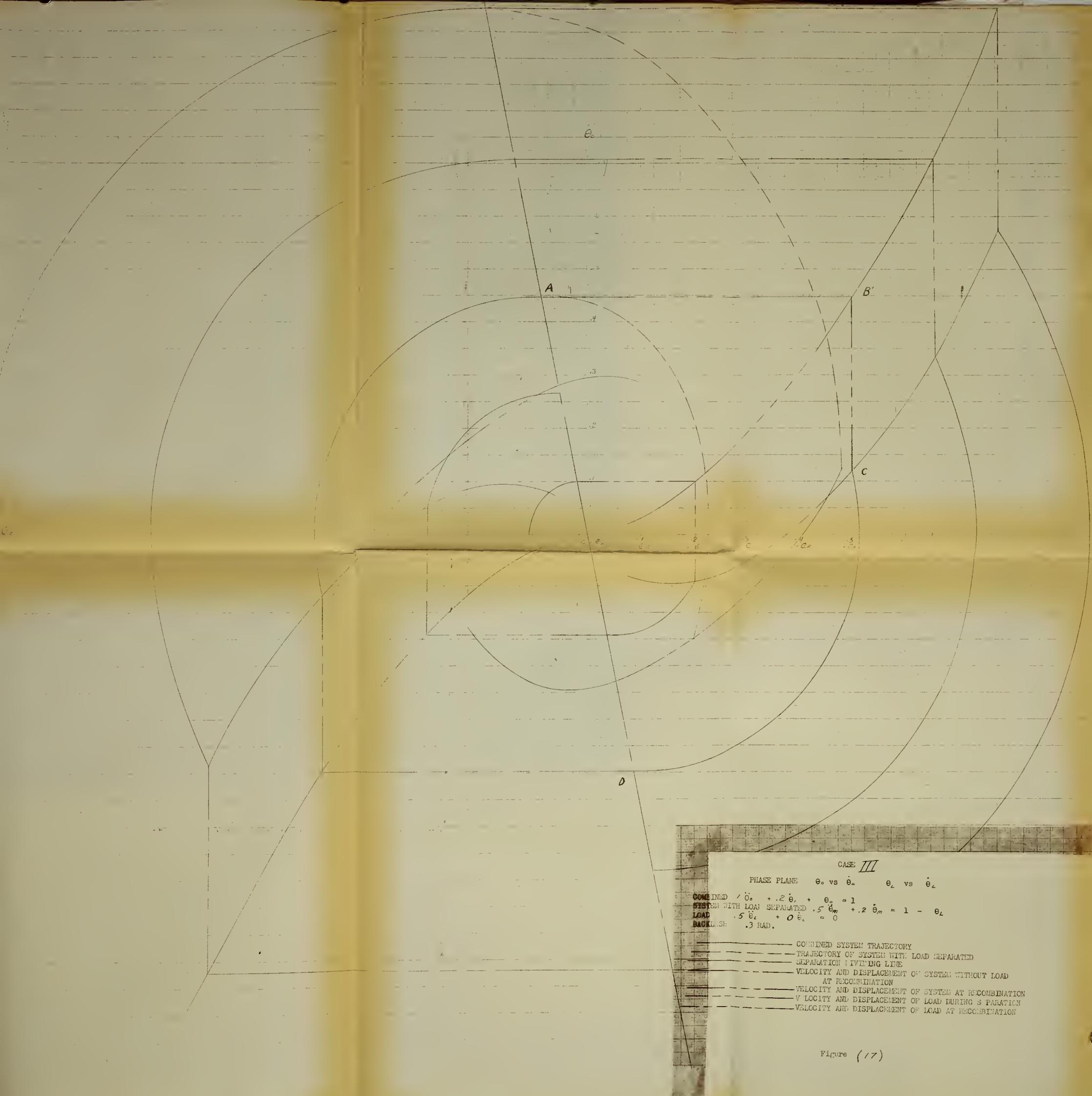
Om 0	O o	Table 13 <i>Θ</i> 。
· 1	.5755	.78
. 5	.1567	•535
• 4	.0858	.469
. 3	.0156	. 396
. 2	0464	.310
. 1	0918	.205
.08	0955	.1769
.06	09 53	.1488
.04	0927	.116
• 02	0803	.076

44

Figure seventeen is the phase plane plot of the system with pertinent dividing lines.

It is seen that a step displacement input of 1.145 spirals into a limit cycle with a constant amplitude of 1.030 while a step displacement of .057 diverges into the identical limit cycle.

When the system is operating in a limit cycle, separation occurs at A, recombination occurs when $\mathcal{O}_m \stackrel{\circ}{\mathcal{O}}_m$ is at B and $\mathcal{O}_{\mathcal{L}}, \stackrel{\circ}{\mathcal{O}}_{\mathcal{L}}$ is at B. The recombined phase trajectory originates from point C on the $\mathcal{O}_{\mathcal{O}} \stackrel{\circ}{\mathcal{O}}_{\mathcal{O}}$ dividing line and the system separates again at D.


Applying stability criteria of section 4 yields the following: At separation, $\Theta_o = .45$, $\Theta_R - \Theta_o = .096$ in limit cycle. Substituting into equation (38), C = .524

Upon recombination in limit cycle, $\dot{\Theta}_{c} = .12$, $\Theta_{R} - \Theta_{c} = ..5$ Uubstituting into equation (38), C = .512. .

+.3	
7.7.7	
E -4	Enter
5 -5	

-6 1	· · · ·			
			and a final for all and	
-8-1				
				[
				and the second s
-10				
			і і і і і і і і і і і і і і і і і і і	
	15 2 2.5	31 35 4		
	T. (· · · · · · · ·	
	Time (sec)			
		- Figure (16)		
	and the second			
		Page 4-6		
			ت ر بر ۱ ۱۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	
				рания (различной страник) (страник) (страник)
	h and			

•

Page 47

9. Case IV. Output measured at load.

Load possesses no viscous friction and has greater part of inertia.

Given system .3 rad backlash

(74) / Oo + . 2 Oo + Oo = /

System as open loop with load separated

$$(75) \cdot 2 \Theta_m + \cdot 2 \Theta_m = 1 - \Theta_L$$

Load separately

$$(76) \cdot 8 \Theta_{L} = O$$

Slopes of the isoclines of the combined system are as tabulated in Table six.

Iquations (40) and (41) are applicable to system when operating in the backlash region, and reduce to

(77)
$$\Theta_m = -2.5 \Theta_{mo} t^2 + 6 \Theta_{mo} t$$

 $-5 \Theta_{mo} (1 - e^{-t}) + 1 - .2 \Theta_{mo}$
(78)

 $(79) \quad \Theta_{L} = \dot{\Theta}_{L0} t + \Theta_{L0}$

Substituting values of (t) in factors of equations (77) and (7°)

results in data tabulated in Table fourteen.

laole 14

t	e^{-t} ($-e^{-t}$	-2.5 t ² 6 t	$(1-e^{-t})$	2 Om -	/
.2	.819	.181	1 1.2	905	2005	
•L	.670	.330	4 2.4	-1.65	2 .15	
• 6	. 549	.451	9 3.6	-2.24	2 .25	
1.0	.368	.632	- 2.5 6	-3.16	2 .14	
1.2	.302	.698	- 3.6 7.2	-3.49	209	
1.4	. 247	.753	- 4.0 8.4	-3.76	246	
1.6	.202	.798	- 6.4 0.6	-3.99	299	
1.9	.166	.834	- 9.1 10.8	-4.14	2 -1.66	
2.0	.136	.864	-10.0 12.0	-4.31	2 -2.51	
2.2	.111	.889	-12.2 13.2	-4.44	2 -3.64	
2.4	. 791	.909	-14.4 14.4	-4.54	2 -4.74	
2.6	. 774	.226	-16.9 15.6	-4.63	2 -4.13	
2.9	.961	•? 39	-19.6 16.9	-4.69	2 -7.69	
3.0	.05	.950	-22.5 18.0	-4.75	2 -0.45	
3.2	.041	.959	-25.6 10.2	-4.79	2 -11.39	
3.4	.0335	.967	-28.9 20.4	-4.83	2 -13.53	
3.6	.027	.973	-32.4 21.6	-4.86	2 -14.86	
3.8	.0?23	.978	-36.0 22.8	-4.39	2 -1°.29	
4.0	.0184	.982	-110 5/1	-)1.90	2 -21.1	

Ôm
.005
.65
.26
25
94
1.51
2.235
3.01
3.83
4.68
56
·.45
7.34
9.31
9.25
0.21
1.17
2.14
3.11
4.09

Figure eighteen is a graph of equations (77) and (79) Times of recombination are obtained from appropriate ordinate scaling of Fig. 1⁰ for various values of $\dot{\Theta}_{mo}$ as was done in Case ITI. Values of (t), corresponding to $\dot{\Theta}_{mo}$ and factors of time solutions for equations (77) and (79) are listed in Table 15.

Table 15

Omo	t	e-t	(1 t	$1 - 25t^{2}$	c+	-5	- 7	
	.78	.1159	.541) -2.57 ² -1.525	4.775	(<i>1-e</i>) -2.71	2	.24)
• 8	.825	.1.38	.562	-1.7	L.95	-2.81	?	.105
• 6	.92	•399	.601	-?.115	5.51	-3.005	?	.111
•4	1.06	.346	.654	-2.8	1.35	-3.265	?	- 34
.2	1.36	.257	.743	-4.41	8.15	-3.715	?	¹⁷ 5
.1	1.75	.174	.826	-7.65	10.5	-4.135	?	11 2
• 28	1.70	.150	.850	-9.0	11.4	-4.25	=,2	1/4
. 76	2.11	.122	.878	-11.11	12.47	-1.395	?	1901
. 24	2.48	.084	.916	-15.38	11.80	-4.59	?	21 10
.02	3.25	.039	.961	-24.4	10.5	-11.80	?	23

Omo	-5+	5/1-55	+1	Om
1	-57 3.9	2.71	1	19
.8	- 4.12	2.81	1	248
.4	- 4.6	3.005	1	357
.11	- 5.3	3.265	1	414
•2	- 6.8	3.715	1	417
.1	- 8.75	4.135	1	3615
. 08	- 9.5	4.305	1	340
. 76	-10.54	4.25	1	3087
. 04	-12.4	4.58	1	2782
•05	-16.22	4.80	1	2084

From equation (24) values of Θ_{o_j} , $\dot{\Theta}_{o}$ are listed in Table sixteen for recombination

Omo	Θ.	ė,
1	.78	.162
.8	. 68	. 5904
.6	.552	.4086
• 14	.1127	.2372
• ?	.272	.0766
.1	.175	.0077
.08	.15	004
.06	.1266	01374
. วน	. 2092	02364
.02	· 7F50	02568

Figure nineteen is the phase plane portrait of the system. The manithree of the limit cycle in this case is 1.15) which considering the difference in inertia distribution between cases III and IV, is not appreciably greater than the 1.030 magnitude of case III.

A step displacement input of .49 is seen to spiral into the li it cycle while a step of .435 is seen to spiral out toward the same limit cycle.

when the system is performing a limit cycle, it is seen to separate at A. The backlash of .3 rad. is not taken up until the system with load removed has reached R and the load has reached 3'. Recombination occurs and the recombined trajectory originates from C. Separation reoccurs on the separation dividing line of point D.

Table 16

52

Applying the stability criteria of section 4 to the limit cycle of case IV yields the following.

For equation (38), the applicable constants are

- K = 1
- F = .2
- J = 1

At separation $\Theta_{\circ} = .195$

 $\Theta_R - \Theta_0 = .095$

Substituting in equation (39)

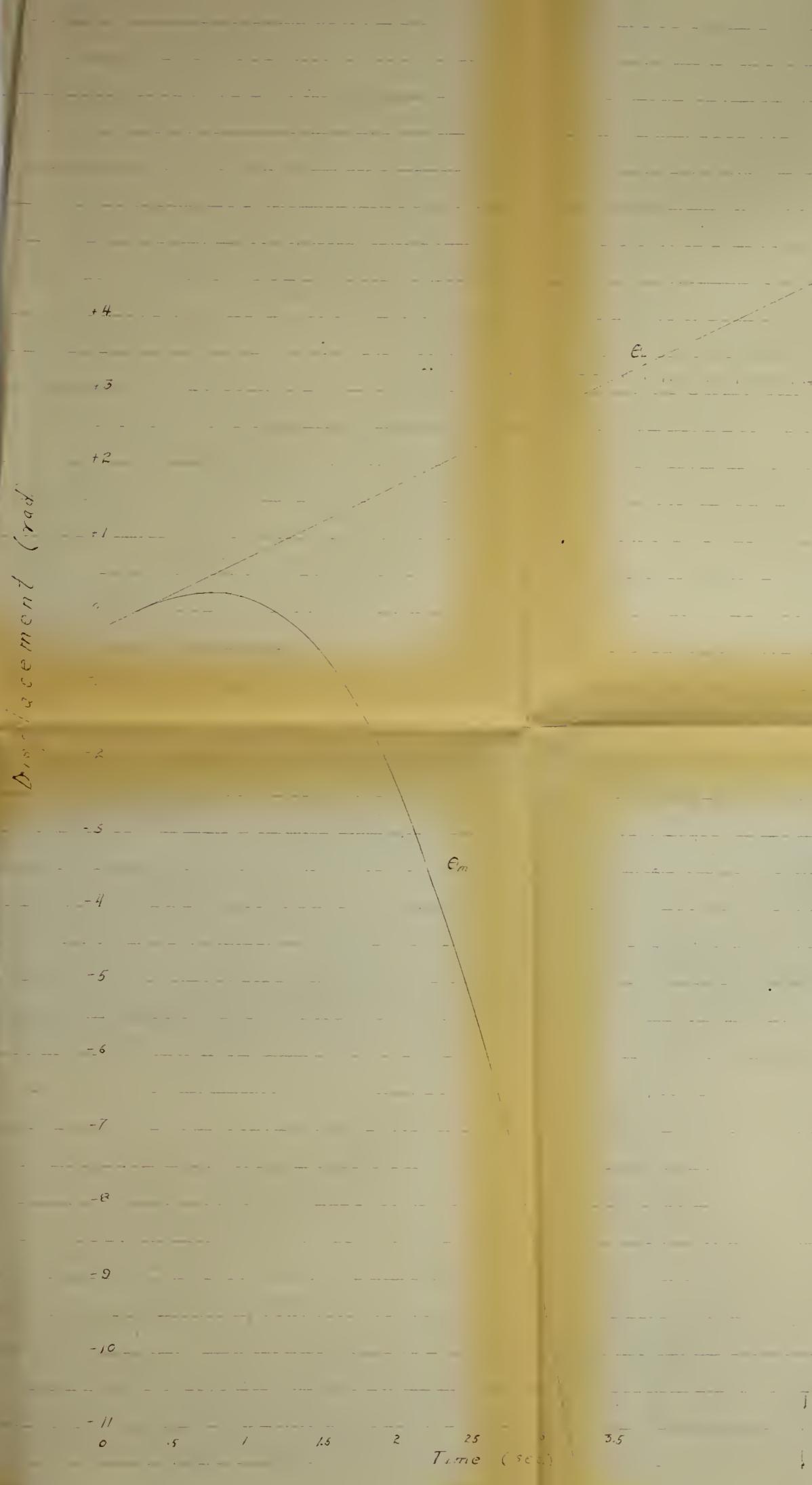
(80)
$$C = \sqrt{(.495)^2 - (.2)(.495)(.095)} + (.095)^2 = \sqrt{\frac{12}{1 - .2\frac{3}{4}}} = \frac{12}{(.095)^{7-\frac{3}{4}}} = \frac{12}{(.095)^{7-\frac{3}{4}}}$$

- .556

Upon recombination,

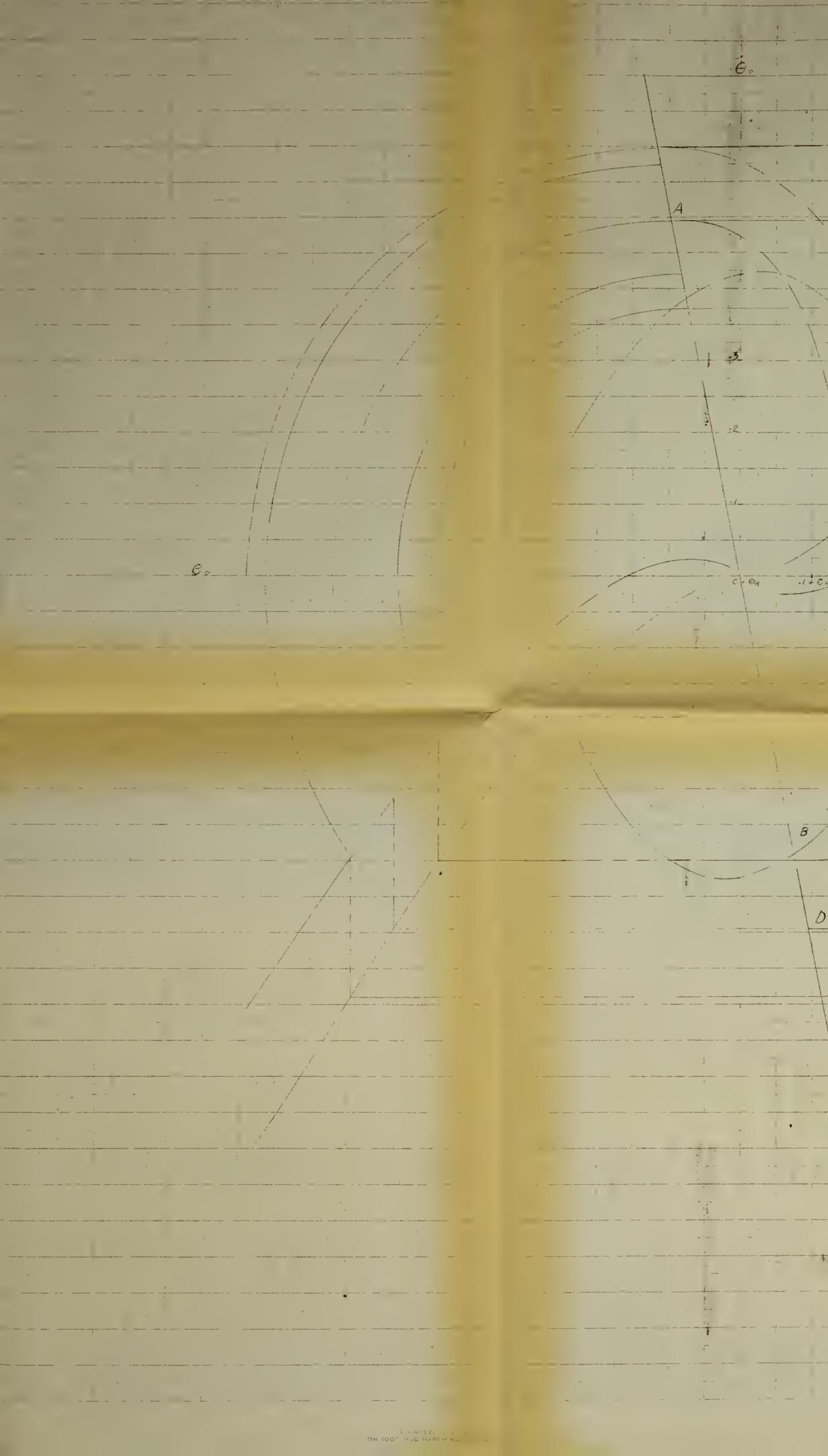
$$\Theta_{\circ} = .315$$

 $\Theta_{R} - \Theta_{\circ} = -.1485$


Substituting in equation (38)

(81)
$$C = \sqrt{(.315)^{2} - (...)^{2} - (...)^{2} - (...)^{2} + (-...)^{2}} e^{\sqrt{1 - \frac{2}{4}} \frac{4\pi \tan(.315)}{(-.18^{2})(...)^{2}} e^{\sqrt{1 - \frac{2}{4}}} \frac{4\pi \tan(.315)}{(-.18^{2})(...)^{2}}$$

2


= .618, which represents only fair agreement.

Case IV - Cont Ch during separation ----• · _____ Figure 18 Page 54 1



, I ,		, ,	-		
			\$		
······	The new branches which where where the state of the s		·····		· · ·
	· · · · · · · · · · · · · · · · · · ·				
					1
	'ni l	/	+	1	
· · · · · · · · · · · · · · · · · · ·	B'		· · · · · · · · · · · · · · · · · · ·	· <u> </u>	
	· · · · · · · · · · · · · · · · · · ·				ا
			ar i - 1	• •	· · ·
the state of the second				1	*-
· · · · · · · · · · · · · · · · · · ·			e j-	7 1 1	
		· · · · · · · · · · · · · · · · · · ·) 	ş	
	1 1 -)
	× -		•	**	1
				-	
			· · · · · · · · · · · · · · · · · · ·	·	
			·		
1		-			
				,	-
· 2+ €R	ER 4+ER				1
		· · · · · · · · · · · · · · · · · · ·		an ala da ante ante a seconda a	anderse description and an an
. 1/	/	1			
· /			$\frac{1}{i}$		
, '	· /		/		
	- /	, /			
			and an an and the second second		
		· · · / · · · · · · · · · · · · · · · ·			-
			1		8
i .					;
	f	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	·) 1 1]	-	
-					
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·		<u>. 3 .</u>	1	,	1 1 1
1 1 3		,			
THE AREA	7.2 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
I the had		CASE TV			
		CASE IV			
	PHASE PLANE	Θ_c Vs	θ, Θ	ະ ນອ ອີ້	
	COMBINED / 9	· + ·20.	_ 1 _ 1	0° - 1	
	CYSTEM TITH LOAD SEPAN LOAD . 8 9 BACKLASH .3	RATED .20m 2 + 00/ RAD.		L - 0,	
the state	COMBINE OF SYSTEM TRAJECTORY OF SYSTEM I SEPARATION DIVIDING LI	VITH LOAD SEPARATE	D		
	VELOCITY AND DISPLACES LOAD AT RECOMB	ENT OF SYSTEM WIT			
14 11 - 24 1722	VELOCITY AND DISPLACE: VELOCITY AND ISPLACE	ENT OF SYSTEM AT ENT OF LOAD DURIN	IC SEI ARATION -		
1 12	VELOCITY AND DISPLACE				
- top-at-		Figure (/9			
		Page 53			

10. Case V. Outout measured at Load.

Load possesses viscous friction. Inertia equally divided between load and system with load separated.

Given system .3 rad. backlash.

 $(82) / \Theta_o + . 4 \Theta_o + \Theta_o = 1$

System as open loop with load separated

$$(83) \quad .5 \quad \Theta_{m} \neq \quad .1 \quad \Theta_{m} = 1 - \Theta_{L}$$

Load separately

 $(8L) \cdot 5\Theta_{L} \neq \cdot 3\Theta_{L} = 0$

To obtain isoclines for the combined system.

(85) $?_{i} \neq .4 = (1 - \Theta_{o})$ (85) $\Theta_{o} = 1 - \dot{\Theta}_{o} (N, + .4)$ Computed values of arctan $\frac{\dot{\Theta}_{o}}{1 - \Theta_{o}}$ for various values of N, are as listed in Table seventeen.

Table 17

n.	arctan <u>Éo</u>	2.	arctan Oc
\sim	0 - 00	2	-78.7
10	- 5.5°	3	-°1,.3 °
7	- 7.7 °	5	AL.3 °
5	-10.5 *	K	78.7°
3	-16.4 °	7	73.3 °
2.5	-19 °	-1	59 °
2	-22.6°	-1.2	51.4
1.5	-27.8	-1.5	42.2
1.2	-32 °		32 °
1	-35.6°	-2.5	25.5
.7	-42.3	-3	21.1
.5	-48 °	-5	12.3 °
.3	-55 °	-7	8.6 °
•5	- 59	-10	5.95
.1	-63.5°		
0	-68.2		
1	-73.3 °		

To obtain the isocline of the system without load, where separation of the load from the system occurs, solve for $\dot{\Theta}_{L}/\dot{\Theta}_{L}$

$$(37) \quad \Theta_{1/2} = \mathcal{N}_{3} = -.6$$

At instant of separation,

$$(88) \quad \frac{\ddot{\Theta}_{m}}{\dot{\Theta}_{m}} + \cdot 2 = 2\left(1 - \Theta_{L}\right)$$

 $(89) \quad \gamma_2 + .2 = 2\left(\frac{1-\Theta_{mo}}{\Theta_{m}}\right) \\ 57$

-

$$(90) \quad \frac{\Theta_{mo}}{I - \Theta_{mc}} = \frac{2}{M_z + 2}$$

Letting N2 = N3 = -.6 (91)arctan $\frac{\Theta_{mo}}{(1-\Theta_{mo})} = 7^{8} \cdot 7^{\circ} \qquad \phi = 78 \cdot 7^{\circ}$.

Equation (40) reduces to

Equation (41) reduces to

Figure 20 is a plot of \mathcal{O}_{n} \mathcal{O}_{L} during separation. Times of recombination are obtained from this plot as described in section three. Table eightteen is a tabulation of equations (92) and (93)

.

Table 18

t	2ť	et	-140 e=.2t	13.9 e . 6t	-1866t	126.3	0m - 1
.2	.9607	.987	-134.5	12.31	- 3.74	126.3	.37
.4	.923	.787	-129	10.92	- 7.46	126.3	.76
.6	.887	. 698	-124.0	9.70	-11.2	126.3	• ⁸ 0
.8	.852	.619	-119.1	8.60	-14.01	126.3	.89
1.0	.819	.549	-11/1.5	7.63	-18.66	126.3	• • 77
1.2	.797	.487	-110.1	6.76	-22.4	124.3	.56
1.1	.756	.432	-105.9	6.0	-26.15	126.3	• 25
1.6	.724	.383	-101.7	5.32	-29.3	126.3	.13
1.8	. 698	.340	- 97.5	4.73	-33.6	126.3	77
2.0	. 470	.302	- 03.75	4.20	-37.4	126.3	65
2.2	. 444	.268	- 90	3.72	-1,1.0	126.3	⁰⁸
2.4	.19	.237	- 86.5	3.30	-44.85	126.3	-1.75
2.F	. 595	.210	- 83.3	2.92	-4°.5	124.3	-2. ^{ER}
2.8	.572	.186	- 80.1	2.58	-52.25	126.3	-37
3.0	.549	.166	- 76.9	2.305	-56.0	126.3	-4.2
3:2	.528	.147	- 73.9	2.02	-59.7	124.3	-5.25
3.4	.507	.130	- 71.0	1.91	-63.5	128.3	-4.30
3.6	.487	.116	- 68.15	1.41	-47.1	126.3	-7.31:
3. 3	.448	.102	- 65.5	1.42	-71.)	124.3	= ⁵ , ^{7 ,0}
4.0	.45	.0^1	- 63.0	1.262	-74.6	126.3	-10.04

	280-21	933-67	- 18.66	Ôm
.2	26.93	- 8.33 e ^{- 67} -7.39	-18.66 -18.66	.88
.4	25.8	-6.55	-18.66	•59
.6	24.85	-5.°0	-18.66	•35
.8	23.82	-5.15	-18.66	.01
1.0	22.9	-4.57	-18.66	33
1.2	22.0	-4.05	-19.66	71
1.4	21.18	-3.6	-12.46	-1.09
1.6	20.33	-3.19	-12.66	-1.52
1.8	19.35	-2.83	-18.46	-1.94
2.0	19.75	-2.52	-18.66	-2.43
2.2	18.0	-2.23	-1º.66	-2.89
2.4	17.3	-1.975	-18.46	-3.34
2.6	14.45	-1.75	-12.66	-3.76
2.8	16.0	-1.55	-18.66	-4.21
3.0	14.35	-1.39	-1°.66	-4.69
3.2	1179	-1.225	-18.66	-5.10
3.4	14.2	-1.0°3	-18.46	-5.54
3.6	13.65	- • 966	-18.66	-5.08
3.8	13.10	850	-18.66	-4.41
4.0	12.4	758	-18.66	-6.82

To obtain the $\Theta_{\mathcal{L}}$ $\dot{\Theta}_{\mathcal{L}}$ dividing line, equation (22) reduces to

 $(04) \quad \Theta_{L} = 1 + .2 \, \dot{\Theta}_{mo} + 1.66 \, \dot{\Theta}_{mo} \left(1 - e^{-.6t}\right)$

Values of equation (94) are tabulated in Table nineteen

Table 19

t •2	.887	(1-e ct) .113	1.66 (1-e-67) .1878	·2 •2	<i>€</i> 2 - 7 • 3°78
• 14	.787	.213	.354	•2	.554
.6	. 69.8	.302	.501	.2	.701
1.0	.549	.451	.750	.2	.950
1.4	.432	.568	.943	.2	1.143
1.8	.340	.660	1.096	.2	1.296
2.2	.268	.732	1.215	.2	1.415
2.6	.210	.790	1.31	.2	1.51
3.7	.166	.834	1.395	.2	1.585
3.4	.130	.870	1.1445	• 2	1.645
3.8.	.10?	.898	1.49	.2	1.69
4.0	.091	.909	1.51	.2	1.71
Values of	$\Theta_m \dot{\Theta}_m \Theta_{m}$	d for divi	ding lines	are <mark>lis</mark> te	d in Table

twenty.

.

•

.

	<i>t</i> 1.075	e ²⁷ .807	e ⁶⁷ .525	-140 eet -112.95	13.9e ⁻⁶ 7.30	-20.05	<i>t 126.3</i> 176 . 3	0m = 1 .6
•8	1.15	.7947	.502	-111.0	6.28	-21.42	126.3	. 488
.6	1.275	.775	.466	-10 ⁸ .35	K.40	-23.79	126.3	. 389 5
•4	1.45	.7482	.4195	-104.65	5.82	-27.03	124.3	.176
•5	1.81	. 69 65	•338	- 97.5	4.70	-33.75	126.3	05
.1	2.35	.6255	• 244	-87.5	3.39	-43.85	126.3	166
.08	2.55	.601	.217	-84.1	3.02	-47.5	126.3	152
.06	2.85	.566	.181	-79.25	2.52	-53.1	126.3	2116
.04	3.30	.517	.13 ⁰	-72.4	1.919	-41.5	126.3	227
.03	3.70	.11775	.109	-66.0	1.515	-49.7	126.3	242

Table 20 continued

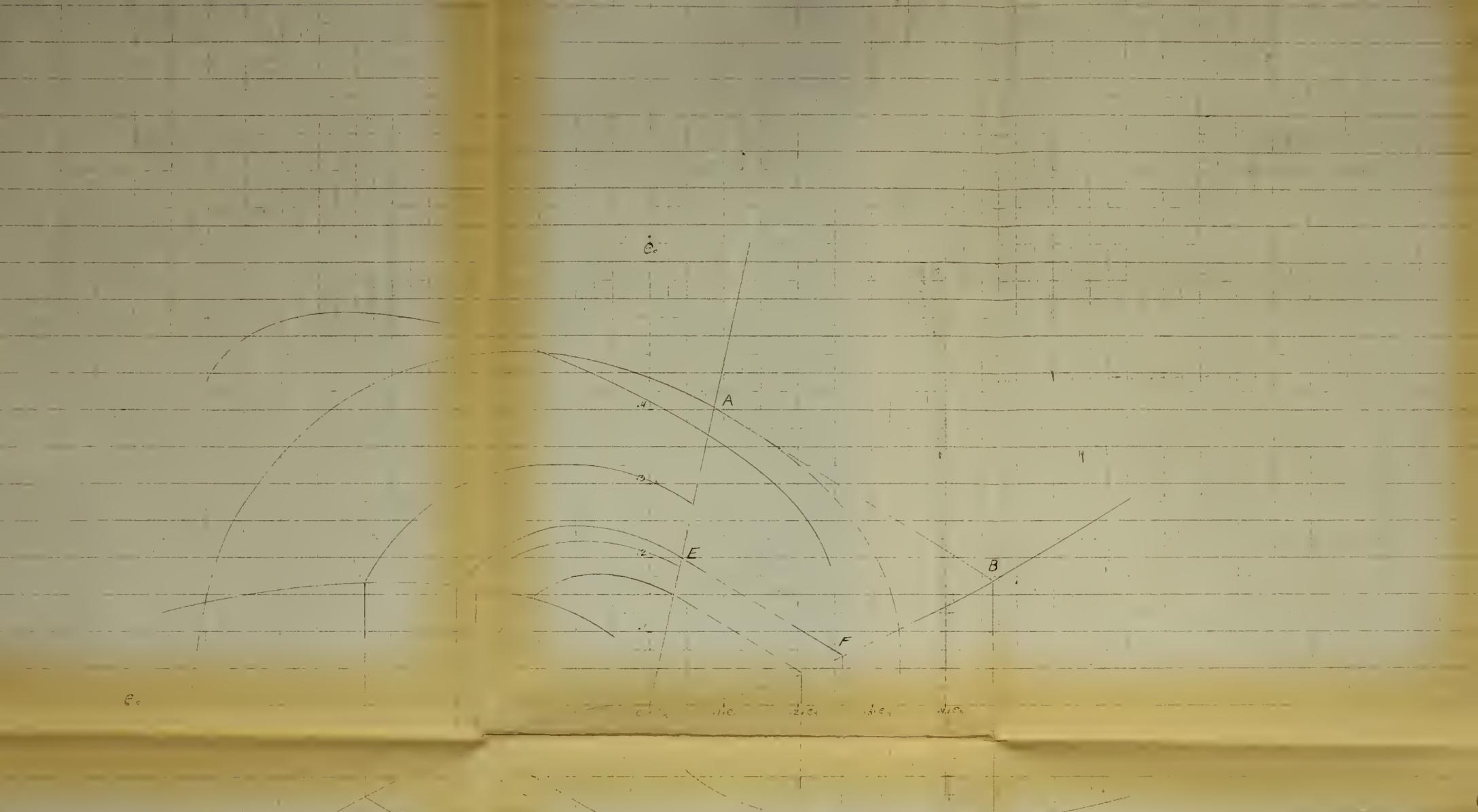
Өто	28e2t	- 8.33e	-67 -18.66 -18.66	114
1	22.59	-4.37	-18.66	114
.8	22.2	-4.18	-18.66	511
.6	21.65	-3.88	-18.66	533
•4	20.92	-3.486	-1 ⁸ .66	49
•5	19.5	-2.812	-18.66	384
.1	17.51	-2.03	-18.66	318
•08	14.81	-1.805	-18.66	292
.06	15.85	-1.506	-18.66	259
.04	14.47	-1.15	-18.66	2133
•03	13.35	909	-19.66	1865

Table 20 continued

Orric 1	<i>†</i> 1.075	e st .525	(1- e ⁶¹ .1175	(1.66 (1-e-6) .789	f) .2 .?	02-1 .989	<i>OL</i> .525
.8	1.15	.502	.198	.926	.2	.82	.401
• K	1.275	.1166	.534	.186	.2	. 451	.28
.4	1.45	.4195	.5805	.965	.?	.466	.1475
. 2	1.81	.338	.662	1.10	.?	.26	.0676
.1	2.35	.244	.756	1.255	.2	.1455	.0244
.08	2.55	.217	.783	1.30	.2	.1?	.01735
.06	2.85	.181	."19	1.36	.2	.0936	.01085
.OL	3.30	.13 8	.862	1.43	.2	.)6525	.00552
.03	3.70	.109	.891	1.48	• 2	.0505	.00327

Equation (24) yields values for $\dot{\mathcal{C}}_{o}$ upon recombination, as tabulated in Table twenty-one.

.


Emo	<i>O</i> 。
l	.0425
• 8	055
•6	1265
•4	16125
.2	1582
.1	1468
.08	1373
.06	1241
.04	1039
.03	0916

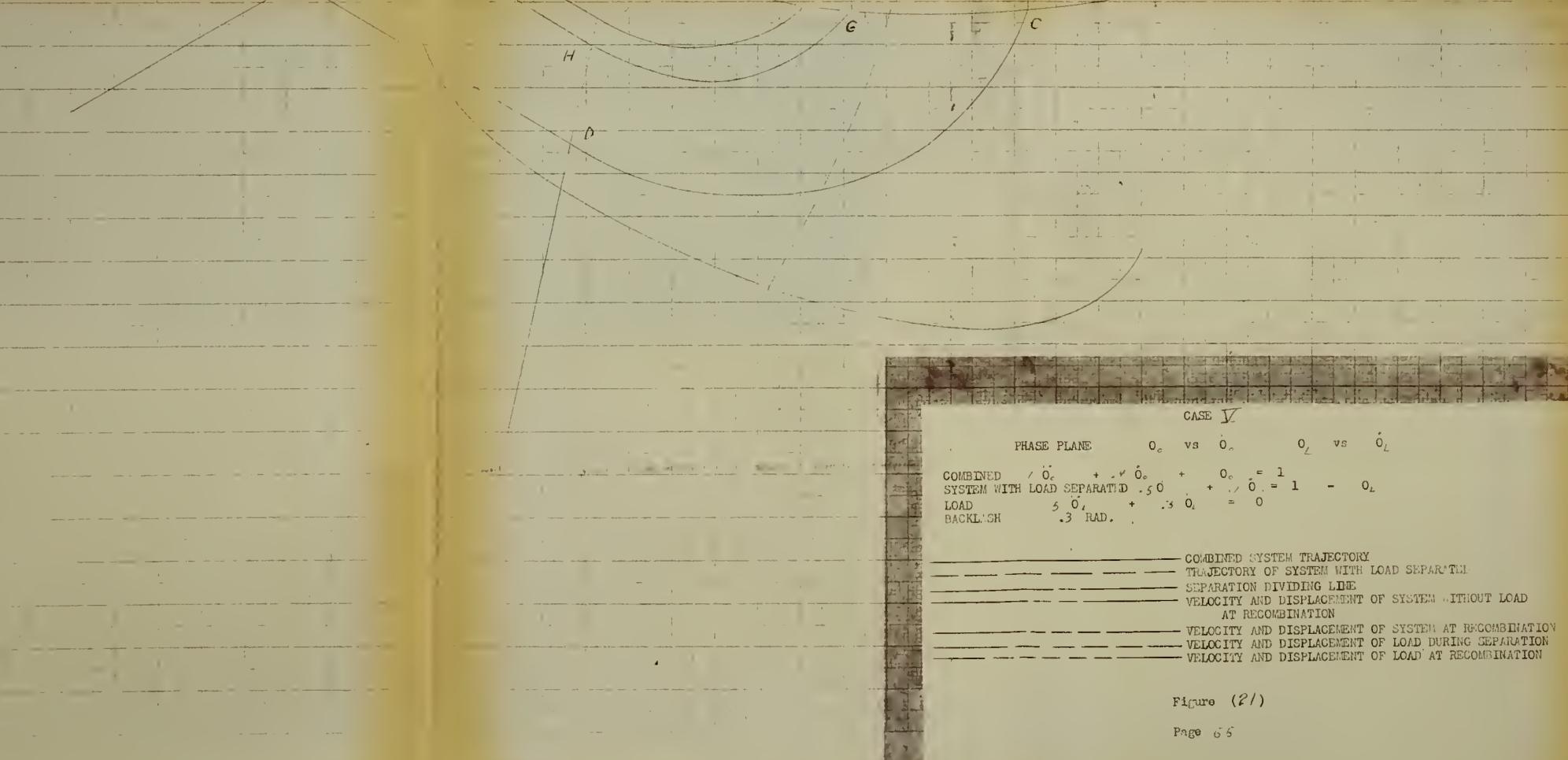

Fig. 21 is the phase plane portrait of Θ_{o} , Θ_{c} , Θ_{L} , Θ_{L} It is seen that in response to a step input of .6?, the system separates at Point A, recombines when Θ_{o} , Θ_{L} is at point B, and once the momentum balance has been satisfied, Θ_{o} for the recombined system originates from point C, reseparating at point D. This trajectory spirals in towards a limit cycle of magnitude .5? while a step input of .73 is seen to spiral outwards into the same limit cycle described by points E, F, G and H.

Table 21

₩... * ------. 1 a. 5.4 . 40 4 . 1 1 an a start -. n 1 1 1 ب Case V +3 Om Quiduring separation 10011 61-+ +1 • + 0 0 . -2

1 + 4 1 1 --- -- 3 + + 1 C.a. * - --4 + - ----+ --5 - 6 + - 7 +____* - 8 Figure 20 Page 65 - 9 - 10 . 1.5 2 2.5 3.5 3 \mathcal{C} 1 5 - Time (sec.)

11. Case VI.

Output measured at load.

Load possesses viscous friction. Inertia equally divided between load and system with load separated

Given system

$$(95) / \Theta_{o} + . 4 \Theta_{o} + \Theta_{c} = 1$$

System as open loop with load separated. . . 3 rad backlash

$$(96) \quad .5 \quad \Theta_m + .3 \quad \Theta_m = 1 - \Theta_L$$

Load separately

$$(97) \quad .5 \quad \Theta_L + .1 \quad \Theta_L = 0$$

Isoclines for the combined system are identical with those of case V, listed in Table seventeen.

To obtain the isocline of the system without load, where separation of the load from system occurs, solve for

$$\frac{(9^{R})}{\dot{\Theta}_{L}} = \gamma_{3} = -.2$$

At the instant of separation

(70)
$$\frac{\Theta m}{\Theta m}$$
 + .6 = $\frac{2(1 - \Theta m c)}{\Theta m c}$

$$(100) \quad \gamma_2 + .6 = 2 (1 - Omo)$$

Letting N2 = N3 = -.2 $\frac{\dot{\Theta}_{mo}}{1 - \Theta_{mo}} = 78.7^{\circ} \not = 101.3^{\circ}$

(102)
$$\Theta_m = -16 \Theta_{mo} t + 111.455 \Theta_{mo} t + 13345 \Theta_{mc} e^{-12t} + 1$$

Equation 11 reduces to

Equation 41 reduces to

(103) $\Theta_m = -16 \Theta_{mo} - 8 \Theta_{mo} e^{-.6t} + 25 \Theta_{mo} e^{-.2t}$

Table twenty-two lists values of Θ_{σ} $\dot{\Theta}_{m}$ versus (t)

t	e 27	¢60	t -125 e2t	Table : 13 345	22 st -16t	111.455	01n - 1
.2	.9608	.987	-120	11.82	- 3.2	111.455	.075
•4	.923	.787	-115.15	10.5	- 6.4	1.1.455	.405
.6	.887	. 698	-110.9	9.305	- 9.6	111.455	.260
.8	.8525	.620	-106.5	8.28	-12.8	111.455	.435
1.0	.819	.550	-102.1	7.35	-16	111.455	.70
1.2	.787	.487	- 98.25	6.50	-19.2	111.455	.505
1.4	.756	.432	-94.5	5.76	-22.4	111.455	.315
1.6	.726	• 384	-90.85	5.12	-25.6	111.455	.125
1.8	. 498	. 340	-87.25	4.545	-28.8	111.4555	05
2.0	. 470	.302	-83.8	4.035	-32.0	111.455	310
2.2	.644	.268	-80.45	3. 58	-35.2	111.455	615
2.4	. 420	.237	-77.5	3.16	-38.4	111.455	-1.285
2.4	.595	.210	-74.45	2.805	-41.6	111.455	-1.790
2.8	.572	.187	-71.5	2.50	-44.8	111.455	-2.345
3.0	.550	.166	-68.8	2.22	-48	111.455	-3.125
3.2	.528	.147	-66.0	1.961	-51.2	111.455	-3.784
3.4	.507	.130	-63.4	1.735	-54.4	111.455	-4.81
3.6	.487	.116	-60.95	1.55	-57.6	111.455	-5.545
3.8	.468	.102	-5 ^R .5	1.361	-60.8	111.455	-4.484
4.0	.450	.091	-56.2	1.213	-64	111.455	-7.532

t	25-27	- 867	-16	Om
.2	24	- 867 -7.1	-16	•9
•4	23.03	- 4.30	-16	73
•6	22.15	-5.574	-16	
•8	21.3	-4.96	-16	• 34
1.0	20.42	-4.40	-16	.02
1.2	19.65	-3.895	-16	245
1.4	18.90	-3.455	-14	445
1.6	18.15	-3.065	-16	915
1.8	17.41	-2.72	-16	-1.31
2.0	14.73	-2.42	-16	-1.69
2.2	16.07	-2.14	-16	-2.07
2.4	15.49	-1.895	-16	-2.405
2.6	14.86	-1.68	-16	-2.82
2.8	14.30	-1.495	-16	-3.195
3.0	13.73	-1.33	-16	-3.60
3.2	13.19	-1.18	-16	-3.99
3.4	12.66	-1.04	-16	-11.38
3.6	12.16	929	-16	-4.769
3.8	11.69	⁸ 16	-16	-5.126
4.0	11.22	728	-16	-5.508

,

6

To obtain the $\Theta_2 \Theta_2$ dividing line, equation (22) reduces to
$(104) \Theta_{L} = \frac{12 \Theta_{mo}}{5} + \frac{\Theta_{mo}}{5(s + .2)}$
(105) $\Theta_{L} = 12 \Theta_{mo} + 5 \Theta_{mo} (1 - e^{2t})$
Values of Θ_{L} versus (t) are tabulated in Table 23

t	$(1 - e^{2t})$	5(1-e-2+)	2	$\Theta_{L} = 1$
•2	.0392	.196	2	.004
•4	•077	•385	2	.185
.6	.113	•565	2	• 365
1.0	181	•905	2	.705
1.4	•244	1.24	2	1.04
1.8	.302	1.52	2	1.32
2.2	•356	1.78	2	1.58
2.6	•405	2.205	2	1.825
3.0	•450	2.25	2	2.05
3.4	•493	2.465	2	2.265
3.8	•532	2.66	2	2.46
4.0	•550	2.75	2	2.55

Figure 22 is a graph of equations (102) and (105). By appropriate ordinate scaling as described in section three, recombination times were computed as listed in Table 24, for corresponding values of $\hat{\mathcal{O}}_{mo}$ Values of $\hat{\mathcal{O}}_m \, \hat{\mathcal{O}}_m \, \hat{\mathcal{O}}_m$ for dividing lines are listed in Table 24.

-

Omo	t	e ^{zt}	÷	-125 e27 -100.4	13.345 e=.67	-16 t	
]	1.1	.803	.517	-100.4	F.9	-17.4	.11.455 .355
• 0	1.175	.791	.494	-00.0	6.6	-10.0	111.1.55 .204
.6	1.275	.775	.446	_96.0	F.225	-20.1	111.455 .22 °
•4	1.425	.75?	.426	-04.0	5.7	-22.8	111.455 .142
•5	1.º75	. 488	.3245	- ² 6.0	4.335	-30.0	111.455 .044
.1	2.425	. 41 4	. 234	-77.0	3.125	-38.8	111.455122
.08	2.64	.590	.206	-73.8	2.75	-42.25	111.4551475
. 76	3.20	•52 ^p	.147	-66	1.06	-51.2	111.455227
.04	3.525	.1011	.1205	-61.6	1.61	-56.5	111.455201
.03	3.08	.452		-54.5	1.23	-43.6	111.4552225

Table 24 continued

Ото	25e-27	-8e6t	-16	Om
1	20.08	-4.135	-16	055
•R	10.8	-3.94	-16	112
•E	19.35	-3.73	-16	222
.4	19.8	-3.41	-16	2)44
.2	17.2	-2.60	-16	28
.1	15.4	-1.87	-16	247
.08	14.75	-1.65	-16	232
. 76	13.2	-1.175	-14	238
. 74	12.32	965	-16	151
.03	11.3	735	-16	113

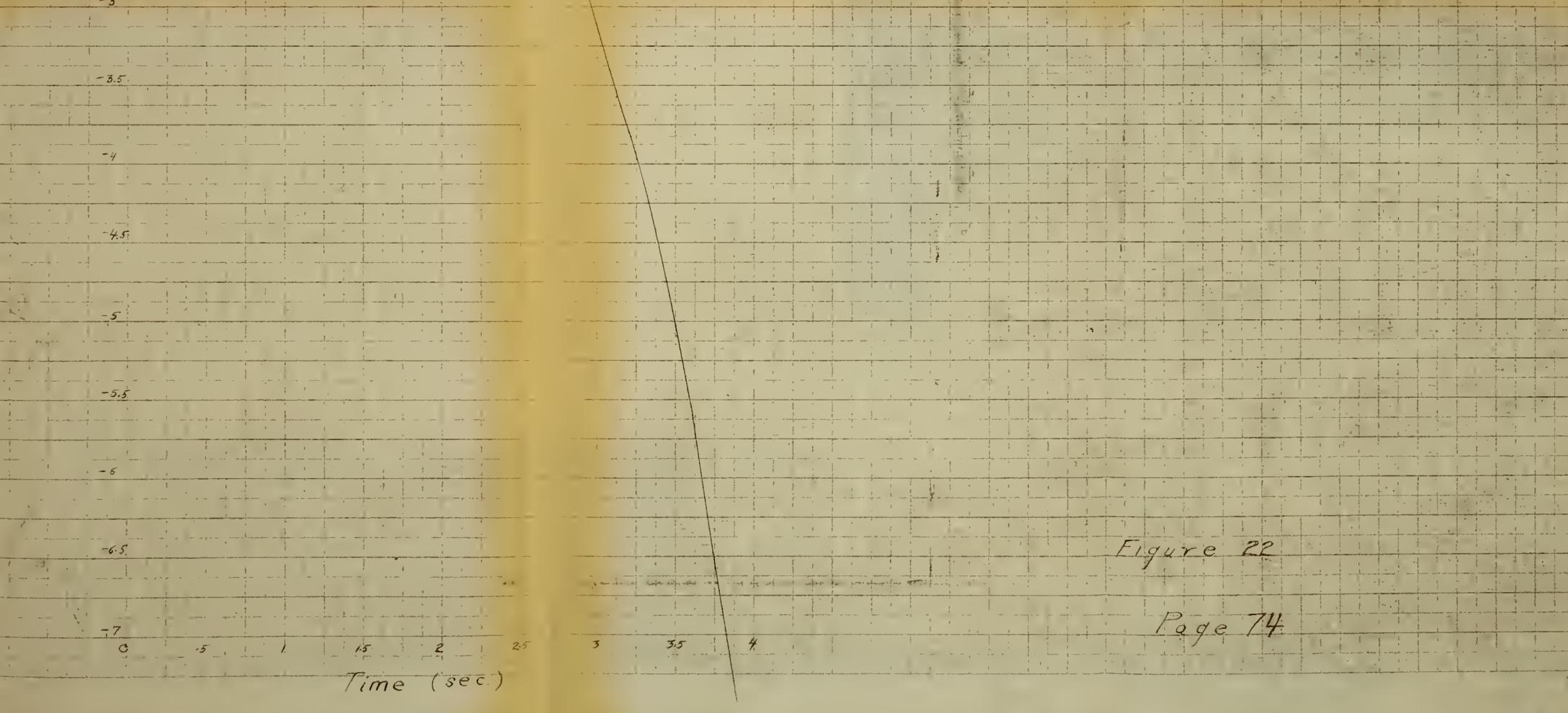
y

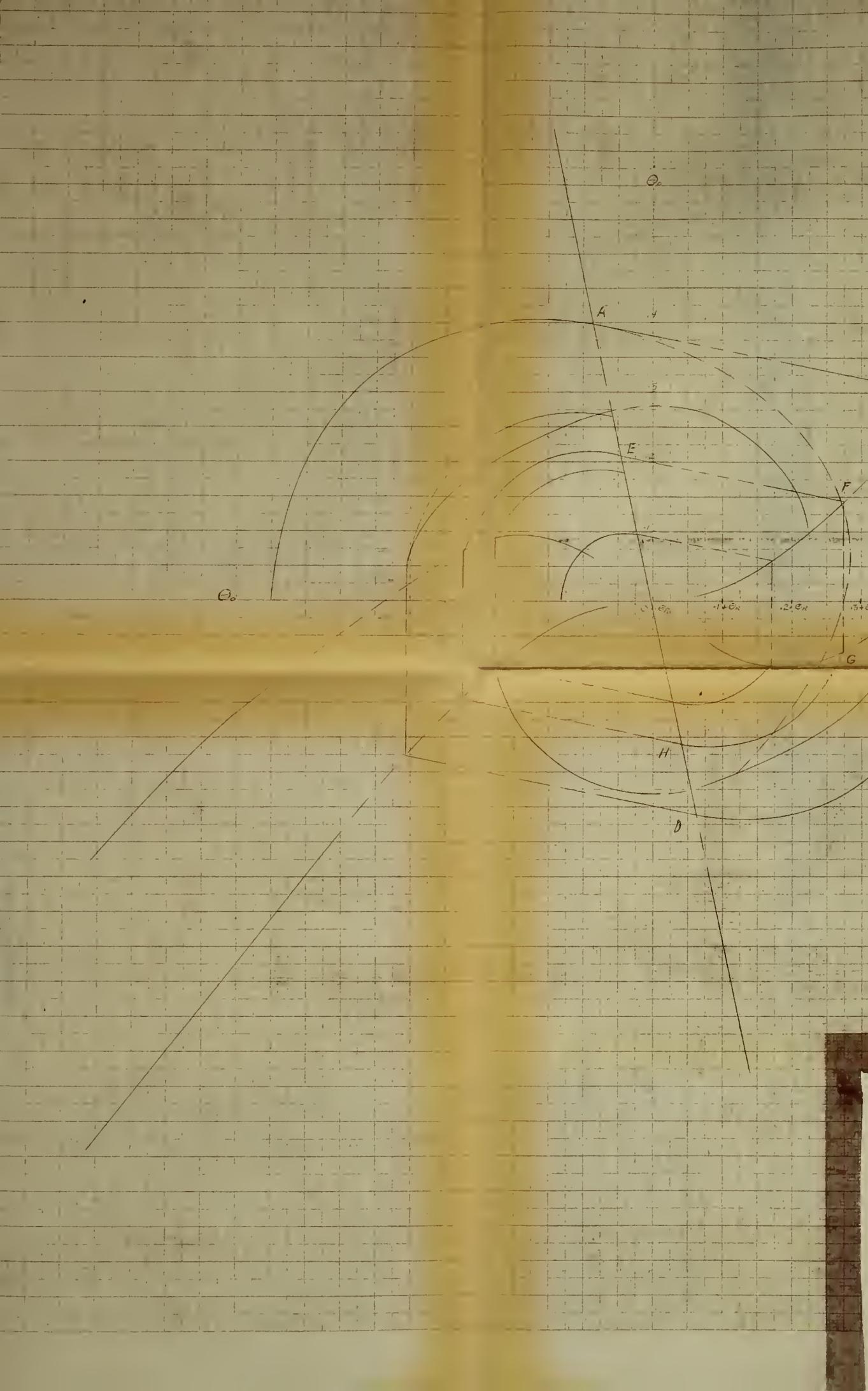
Inule 24 continued

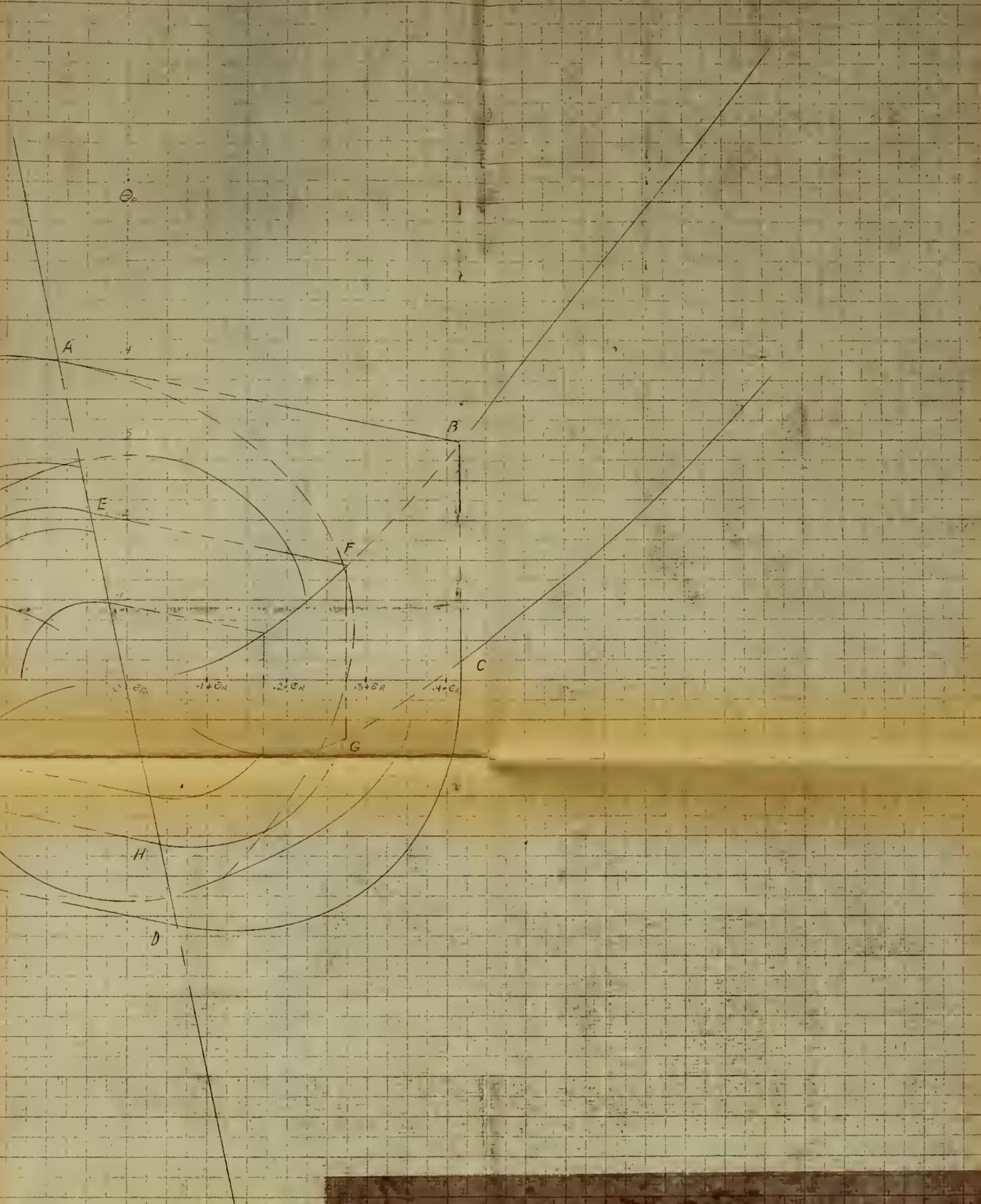
G 1710	-t-	Ô ₄₋	0 1
1	1.1	.803	.785
• ⁸	1.175	.632	.675
• 6	1.275	.465	.555
• 14	1.425	.30	.1.1.55
• 2	1.875	.1375	.272
.1	2.425	.0616	.172
.08	2.64	.047	.148
. 75	3.2	.0316	.1292
. 04	3.525	.01975	.093 3
.03	3.98	.01352	.0761

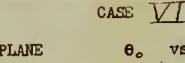
ipplying equation (24) to satisfy the principle of conservation of momentum yields the following values of Θ_{o} upon recombination correstonding to values of Θ_{mo} upon separation, listed in Table twenty-five.

Table 25


Это	é.
1	.374
. 5	.260
.6	.1216
•4	.029
.2	.07125
.1	0927
.08	0925
.06	1032
•04	0656
.03	0497


Figure 23 is the phase plane presentation of $\Theta_{o}, \Theta_{o}, \Theta_{L}, \Theta_{L}$ as a combined system and when operating in the backLash region.


A step input of .55 is seen to separate the load from the system at A. Recombination takes place when the load is at B, and the balancing of momentum between the load and the system without load, causes $\Theta_{\sigma_{j}} \Theta_{\sigma_{j}}$ of the recombined system to originate from point C. Reseparation occurs at point D and the trajectory is seen to spiral into a limit cycle defined by points E, F, G and H.


A step input of .13 is seen to spiral outward to the same limit cycle of magnitude .550

menter a financia de la seconda de la second	
the second se	
to a final a f	
a single printing to the stand of the second of	
1.5	
and the second s	
	Case VI
	CaseVI
-1.5	En Pilduring Separa Tuan
	Om Or during separation
the constraint and the second se	$\hat{\Theta}_{mo} = /$
<u></u>	
	and and a second the second and the
s'	
-3	

VS

θ.

PHASE PLANE				
COMBINED	/ θ. +			
SYSTEM WITH	LOAD SEPARATED			
LOAD	•5 θ _m +			
BACKLASH	.3 RAD.			

.4 •5 •/	-	+ + = 0	θ, • 3 ḋm	- 1 - 1		
(COMBINE	D SYST	EM TRAJE	CTORY		
					DAD SEPAR	RATED
5	SEPARAT	ION DI	VIDEIG I	INE		
٦	VELOC IT	Y AND	DISPLACE	MENT OI	F SYSTEM	WITHOUT
1	LOAD AT	RECOM	BINATION			

RECOMBINATION

VELOCITY AND DISPLACEMENT OF SYSTEM AT RECOMBINATION VELOCITY AND DISPLACEMENT OF LOAD DURING SEPARATION VELOCITY AND DISPLACEMENT OF LOAD AT

θ

78

.

 θ_L

12. Jase VII

Output measured at load.

Load possesses viscous friction and the reater part of the system inertia.

Piven system

106)
$$I \Theta_{6} + \cdot \mathcal{I} \Theta_{c} + \Theta_{0} = I$$

System as open loop with load separated. .3 rad. backlash

(107) $2 \Theta_m + 1 \Theta_m = 1 - \Theta_L$ Load separately (108) $8 \Theta_L + 3 \Theta_L = 0$

isoclines of the combined system are identical with those of case V, listed in Table seventeen.

to obtain the isocline of the system without load, where separation of the load from the system occurs, solve for

(109) $\frac{\Theta_{L}}{\Theta_{L}} = \frac{\gamma_{3}}{3} = -\frac{3}{8}$ At the instant of separation,

(110)
$$\frac{\Theta_m}{\Theta_m} \neq .5 = \frac{5(1-\Theta_{mo})}{\Theta_{mo}}$$

(111)
$$\eta_{2} \neq .5 = 5 (i - \Theta m_{0})$$

(112)
$$\frac{\Theta_{mo}}{1 - \Theta_{mo}} = \frac{5}{\eta_2 + .5}$$

Letting $N_2 = N_3 = -.375$

(113)
$$\arctan \frac{\Theta_{m_0}}{1 - \Theta_{m_0}} \arctan \frac{5}{-375 + .5} = \frac{98.56}{6} = 91.14$$

Equation (40) reduces to

Equation (1,1) reduces to

(115)
$$\hat{\Theta}_{m} = -26.4 \hat{\Theta}_{mo} - 79.238 \hat{\Theta}_{mo} e^{-.375} t^{-.375} t^$$

Equation 22 reduces to

(116)
$$\Theta_{c} = 1 - .025 \Theta_{mo} + 2.668 \Theta_{mo} \left(1 - e^{-.3757}\right)$$

Equation 23 reduces to
(117)
$$\Theta_{L} = \Theta_{rroo} e^{-.375 t}$$

Table twenty-six lists values of equations (114), (115), (114) and (114)
for various values of (t)
Equations (114) and (114) are plotted on Fig. 24 and various times of
recombination obtained from the ordinate scaling method described in
section 3.

t	E.5t	- 375 C	t 15847. est	5 - 26.47	L - 284.47	5 + 125.97.	5 Om-1
.2	.905	,928	143.3	- 5.28	-264	125.975	005
•4	.919	.861	129.8	-10.56	-245.2	125.975	.0 15
.6	.741	.799	117.45	-15.83	-227.3	125.975	295
.8	.670	.741	106.05	-21.12	-211.1	125.075	205
1.)	.607	. 688	94.15	-21.4	-195.9	125.975	175
1.2	.550	.638	87.1	-31.44	-181.5	125.975	065
1.)4	.407	. 592	7 [×] .75	-37.0	-168.6	125.975	975
1.6	.450	.549	71.4	-42.2	-156.0	125.975	⁸ 2*
1.8	.407	.510	64.5	-47.5	-145.1	125.975	-2.125
2.0	.368	.473	58.4	-52.8	-134.7	125.975	-3.125
2.2	.333	.43.9	52.85	-58	-121.6	125.075	-3.775
2.4	.302	.407	47.95	-63.35	-115.85	125.975	-5.275
	.272	.378	43.1	-68.55	-107.75	125.975	-7.225
2.8	.247	.350	39.2	-74.0	- 90.6	125.975	-2.42-
3.0	. 224	.325	35.53	-79.1	- 92.5	125.975	-10.095
3.?	.202	.302	32.0	-84.5	- 84.0	125.075	-12.525
3.4	.183	.290	29.0	-89.7	- 79.75	125.975	-14.475
3.6	.166	.260	24.3	-95.)	- 74.0	125.075	-14.725
3.8	.150	.21,1	23.8	-100.2	- 68.5	125.975	-1°.92°
4.0	.136	• 55/1	21.54	-105.6	- (3.8	125.975	-21.885

ø

Table 24 continued

+

t	-79.238 e st	06.638 e ^{-,375} t	- 26.4	Orm
•2	-71.65	08.95	-24.4	.90
.4	-64.9	91.9	-24.4	.60
.6	-58.68	85.1	-26.4	.02
.8	-53.05	79.0	-26.4	45
1.0	-4 ^R .05	73.4	-26.11	-1.05
1.2	-43.53	68.0	-26.4	-1.93
1.4	-39.4	63.1	-24.11	-2.7
1.6	-35.62	59.5	-26.4	-3.52
1.8	-32.2	54.45	-26.4	-4.15
2.0	-29.18	50.49	-26.4	-5.09
2.2	-26.11	46.65	-26.4	-6.15
2.4	-23.93	13.40	-2F.l	-6.93
2.8	-21.56	40.35	-26.4	-7.61
2.8	-19.58	37.35	-26.4	-8.63
3.0	-17.76	34.62	-26.4	-9.54
3.2	-16.0	32.2	-26.4	-10.2
3.4	-14.5	29.9	-24.4	-11.1
3.6	-13.16	27.7	-26.4	-11.86
3.8	-11.9	25.7	-28.4	-12.6
4.0	-10.79	23.9	-26.4	-13.29

Table 26 continued

+	(1-0-,375	7 2.668	3 757)025 025	01	ÖL.
.2	.072	.192	025	0 ₂ - 1 .167	.028
.4	.139	.371	025	. 346	.961
•6	.201	.536	025	.511	•799
.8	.259	.6905	025	.6655	.741
1.0	.312	.8325	025	.8075	.688
1.2	. 342	.9125	025	.8875	.638
1.4	.408	1.09	025	1.065	.592
1.6	.451	1.205	025	1.180	.549
1.9	.490	1.31	025	1.285	.510
°.)	.527	1.41	025	1.385	.473
°.2	. 542	1.449	025	1.424	.438
2.4	.593	1.582	025	1.557	.407
2.6	.622	1.66	025	1.635	. 378
2.2	.650	1.735	025	1.710	.350
3.0	. 675	1.80	025	1.775	.325
3.2	. 498	1.862	025	1.837	. 302
3.4	.720	1.92	025	1.895	.280
3.6	.740	1.975	025	1.950	.260
3.8	.759	2.022	025	1.997	.241
4.0	.776	2.075	025	2.050	.224

Values of $G_m \stackrel{\circ}{\ominus}_m \stackrel{\circ}{\ominus}_L \stackrel{\circ}{\ominus}_L$ for recombination dividing lines are listed in table twenty-seven, for values of (t) obtained from rig. 24.

Table 27

Omo	t	e ⁵ t	e ³⁷³	5 <i>7</i> 158.475 e57 121.95	- <i>26.4†</i>		75 7 125 9 73 125.975	5 Om= 1 .)f15
1	•747	.7695	• ~ < 1	TCT #70	-1)."()	=2,4.,7	T()•41)	•)(')
.8	.587	.746	.803	11.25	-15.5	-228.3	125.975	.340
• -	.687	.7096	.7733	112.3	-18.12	-220	125.075	· ³ 03
•4	.862	. 450	.724	103.0	-22.79	-2060	125.075	. 774
.?	1.25	.536	.626	85.0	-33.0	178.3	125.975	-* 1/5
.1	1.70	.428	.529	67.85	-44.9	-150.4	127.975	1475
.08	1.875	. 392	.496	62.1	-49.5	-1/11.2	125.975	2
.06	2.115	.348	.453	55.15	-55.85	-129.6	125.975	2 31
.04	2.465	.292	.397	46.35	-65.05	-113.0	125.975	
.02	3.275	.195	• 294	30.93	-84.5	- 193.75	125.975	··· · > + F.F

Table 27 continued

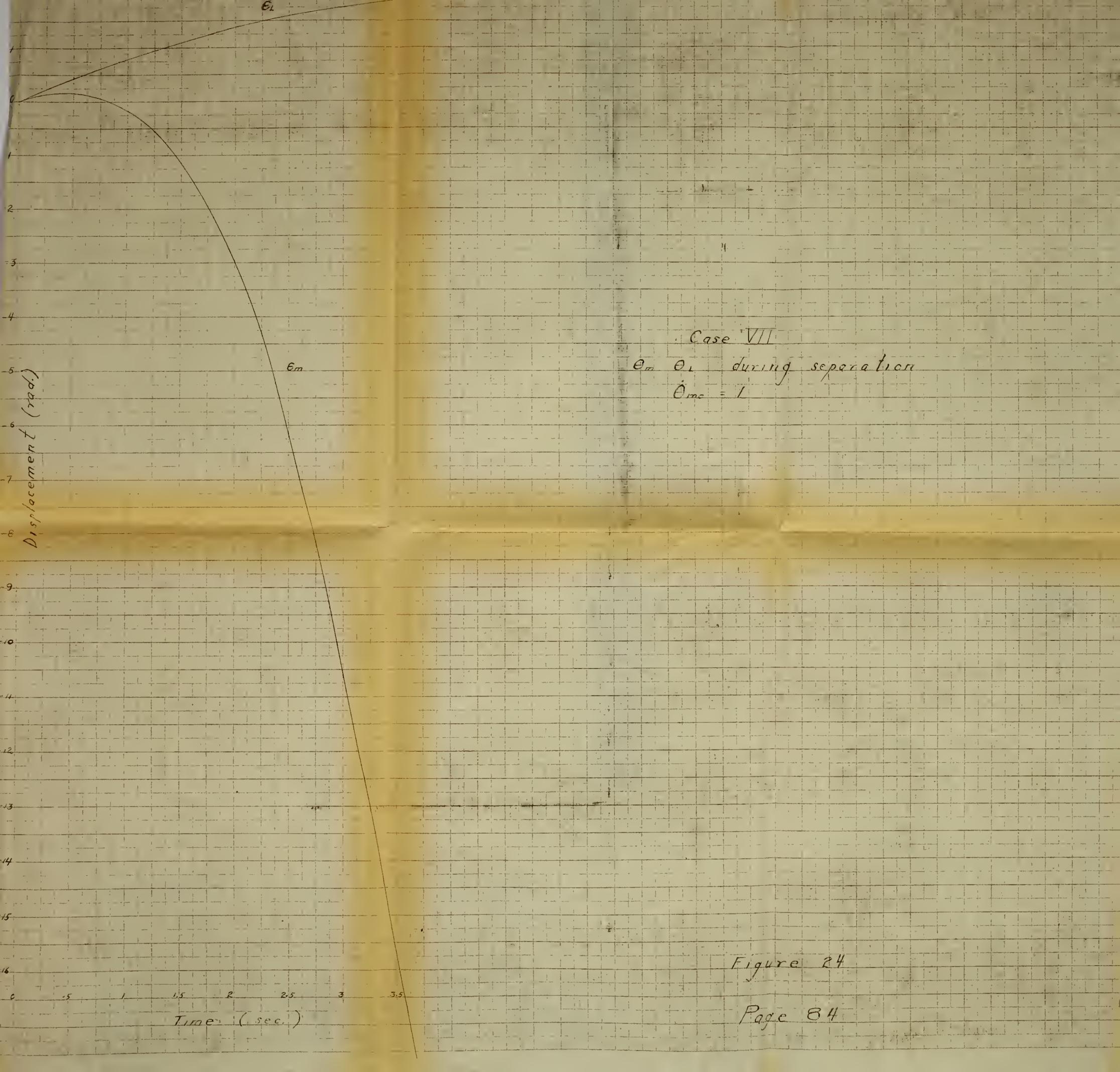
Ото 1	-79.238 e ^{5t} -60.97	/06-638 e ^{,3757} 87.51	-26.4 -26.4	0
.8	-59.08	85.55	-26.4	.056
• 6	-51.1	82.5	-26.4	0
• h	-51.5	77.20	-26.11	38
.2	-42.5	66.8	-24.4	42
.1	-33.88	56.45	-24.4	383
.08	-31.05	52.95	-26.11	36
.06	-27.6	48.3	-26.4	342
.04	-23.15	42.33	-26.4	289
. 02	-14.48	31.3	-24.4	2113

Table 27 continued

Ômo	t	(i - e 375	t 2.66 B	(7) = .025	EL-1	Ô,
1	.525	.1783	t = 2.668 $(1 - e^{375})$.1753	025	.4503	.8217
.8	.587	.197	.525	025	•)100	.6425
•6	. 627	.2247	.605	025	.348	.144
•4	.862	.276	.736	025	.2842	. 2993
.2	1.25	.374	.996	025	.1942	.1252
.1	1.70	.1.71	1.259	025	.1234	. 3529
•08	1.875	.504	1.343	025	.1053	.0397
.ne	2.115	.=47	1.46	025	.086	.)272
• 04	2.465	.603	1.61	025	.)635	.)1599
.02	3.275	.706	1.885	025	.0372	. 20589

Equation 21, yields values for Θ_o recombination line as follows:

Ômo	ė,
1	.685
.2	.5252
• 5	.371
•]1	.1553
.2	.0161
.1	03425
.08	0402
.06	04629
.04	0451
.02	03755


Table 28

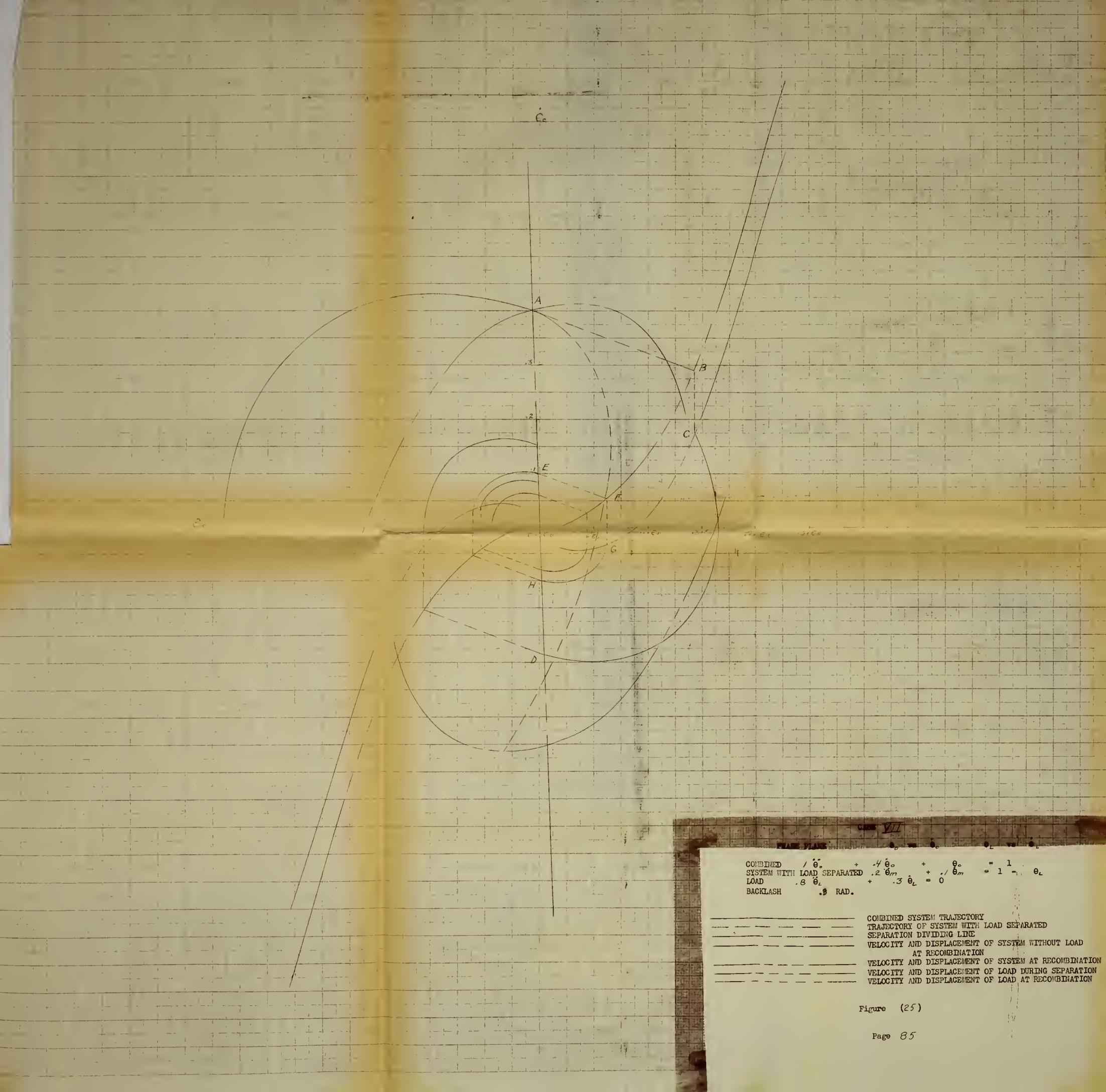


Figure 25 is the phase plane portrait of $\partial_{e} \partial_{e} \partial_{e} \partial_{e}$ for the combined and separated system. A step input of .5% is seen to separate load from system at point: A. The system recombines when the load has decelerated to point B, and satisfaction of the momentum balance again causes Θ_{o} O_{e} to originate from point C. Reseparation occurs at point D and the trajectory is seen to converge to the limit cycle described by points E, F, G and E. A step input of .09 is seen to spiral outward to the same limit cycle of magnitude .050.

83

13. Case VIII

Output measured at load

Load possesses greater part of systems inertia but lesser part of

system friction.

Given system.

$$(118) \quad / \Theta_o + \cdot \cdot + \Theta_o + \Theta_o = /$$

System as open loop with load separated. .3 rad. backlash

(119)
$$\cdot \mathcal{Z} \Theta_m + \cdot \mathcal{Z} \Theta_m = I - \Theta_L$$

Load separately

$$(120) \quad \cdot \mathcal{B} \Theta_{L} \neq \cdot / \Theta_{L} = 0$$

Isoclines of the combined system are identical with those of case V, listed in Table seventeen.

To obtain the isocline of the system without load, where separation of the load from the system occurs, solve for

$$(121) \quad \frac{\Theta_{L}}{\Theta_{L}} = 7/3 = -1/8$$

At the instant of separation

(122)
$$\frac{\Theta_m}{\Theta_m} + 1.5 = \frac{5(1 - \Theta_{mo})}{\Theta_{mo}}$$

(123)
$$\eta_2 + 1.5 = 5(1 - \Theta m_0)$$

$$\begin{array}{rcl} (121_{4}) & \underline{\Theta_{mo}} &= & \underline{5}_{.} \\ 1 - \Theta_{mo} & & \overline{\eta_{2}} + 1.5 \end{array}$$

Letting $N_2 = N_3 = -.125$

(125)
$$\arctan \frac{\Theta_{m}}{1 - \Theta_{m}} = \arctan \frac{5}{1.375} = 74.6 \quad \phi = 105.4$$

Equation (10) reduces to
(126)
$$\Theta_m = -25.75 \quad \Theta_{mo} t + 231.581 \quad \Theta_{mo} t - 125t + 1.564 \quad \Theta_{mo} e^{-1.5t} - 233.42e^{-.125t}$$

Equation (41) reduces to

(127)
$$\hat{\Theta}_m = -2.34 \hat{\Theta}_{mo} e^{-1.5t} + 29.08 \hat{\Theta}_{mo} e^{-.125t} - 25.74 \hat{\Theta}_{rmo}$$

Equation (22) reduces to

(128) $\Theta_{L} = 1 - .275 \Theta_{mo} + 8 \Theta_{mo} \left(1 - e^{-.125t}\right)$

Equation (23) reduces to

$$(129) \quad \Theta_L = \Theta_{TTO} C \qquad -.125 t$$

Table twenty-nine is a tabulation of values of equations (126),(128), and (129) for various values of (t). Figure (26) is a graph of equations (126) and (128). Suitable scaling of the ordinate yields recombination times for various values of \hat{O}_{mo} as listed in Table thirty. Equation (24) yields values of \hat{O}_{o} upon recombination, as listed in Table thirty-one.

t	e=1.57	+ e12.	st Ta	ble 29	-23342 p125t	25.74	t Gm-1
.2	.741		1.5640-54 1.157	231.581 231.581	-228	- 5.15	112
.4	.549	.951	.858	231.581	-222	-10.3	.139
.6	.407	.9278	.636	231.581	-216.1	-15.43	.687
.8	. 302	.905	.4725	231.581	-211.3	-20.6	.1535
1.0	.2?2	.883	.31.75	231.581	-206.0	-25.74	.1885
1.2	.146	.861	.260	231.581	-201.2	-30.86	219
1.4	.1225	• 24	.192	231.5%1	-196.0	-36.0	227
1.6	.091	.819	.1422	231.581	-101.0	-/11.15	427
1.8	.757	.7987	.105	231.5°1	-186.2	-46.3	°1];
2.0	.05	.779	.0783	231.581	-181.6	-51.5	-1.44
2.2	.037	.760	.058	231.581	-177.2	-56.55	-2.11
2.4	. 7273	.741	.0427	231.581	-173	-41.75	-3.13
2.6	.0203	.7227	.0318	231.581	-168.6	-67.0	-3.087
2.8	.015	.705	.02345	231.581	-164.6	-72.0	- ^E . O
3.0	.011	. 688	.017?	231.581	-160.3	-77.25	-5.952
3.2	.0091	.670	.01/155	231.581	-156.3	-82.4	-7.105
3.4	. 0061	.654	.00955	231.581	-152.6	-87.5	-1.510
3.6	.0045	. 53R	.00705	231.581	-149.0	-92.6	-10.012
3.8	. 0034	.622	. 705325	231.581	-145.1	-27.4	-11.314
4.0	.0.)25	. 407	.00392	231.581	-141.5	-103	-12.915

ú

Table 29 continued

t	(1-e-1251) 8(1···	25ty - 275	$\Theta_L - 1$	OL
.2	.0247) 8(1-e .1978	275	0772	.9753
.11	•049	• 392	275	.117	.951
.6	.0722	.5775	275	.3025	.9274
۹.	. 095	.76	275	.485	.905
1.0	.117	.936	275	.661	.883
1.2	.139	1.112	275	.837	.861
1.4	.160	1.28	275	1.005	.84
1.4	.181	1.45	275	1.175	.819
1.8	.2013	1.61	275	1.335	.7987
2.0	.221	1.77 .	275	1.495	.779
2.2	.240	1.92	275	1.645	.760
2.4	.259	2.075	275	1.800	.741
2.6	.2773	2.22	275	1.945	.7227
2.8	.295	2.36	275	2.085	.705
3.0	.312	2.50	275	2.225	. 689
3.2	.330	2.64	275	2.365	.670
3.4	.346	2.77	275	2.405	. 654
3.6	.342	2.898	275	2.623	.639
3.8	.378	3.021	275	2.746	.622
4.0	• 393	3.14	275	2.865	.607

Table 30

Ото 1	t.80	e ^{-1.5} t .302	e ^{175T} .905	1.564 e -1.5t .]1725	2 <i>31.581</i> 231.581	-233:42 e125t -211.3	- <i>25,74</i> -20 . 6	.1535
•8	.875	.270	. 20 KU	.h215	231.581	-209.2	-22.5	.250
.6	.975	.232	.8853	.363	231.591	-20×.11	-25.1	.266
•4	1.163	.175	.865	.274	231.581	-202.0	-29.96	042
•2	1.55	•098	.824	.1531	231.5 ⁸ 1	-192.1	-39.9	0532
.1	2.025	.048	.7765	.075	231.581	181.2	-52.1	1644
.08	2.2	• 737	.760	.0579	231.581	-177.4	-54.55	145
.06	2.43	.026	.738	.0406	231.581	-172.1	-62.5	17**
• 04	2.862	.0136	.6995	.02125	231.581	-163.1	-73.6	204
.02	3.90	.0029	. 414	.00454	231.5 ^P 1	-143.2	-10).4	24)5

Table 30 continued

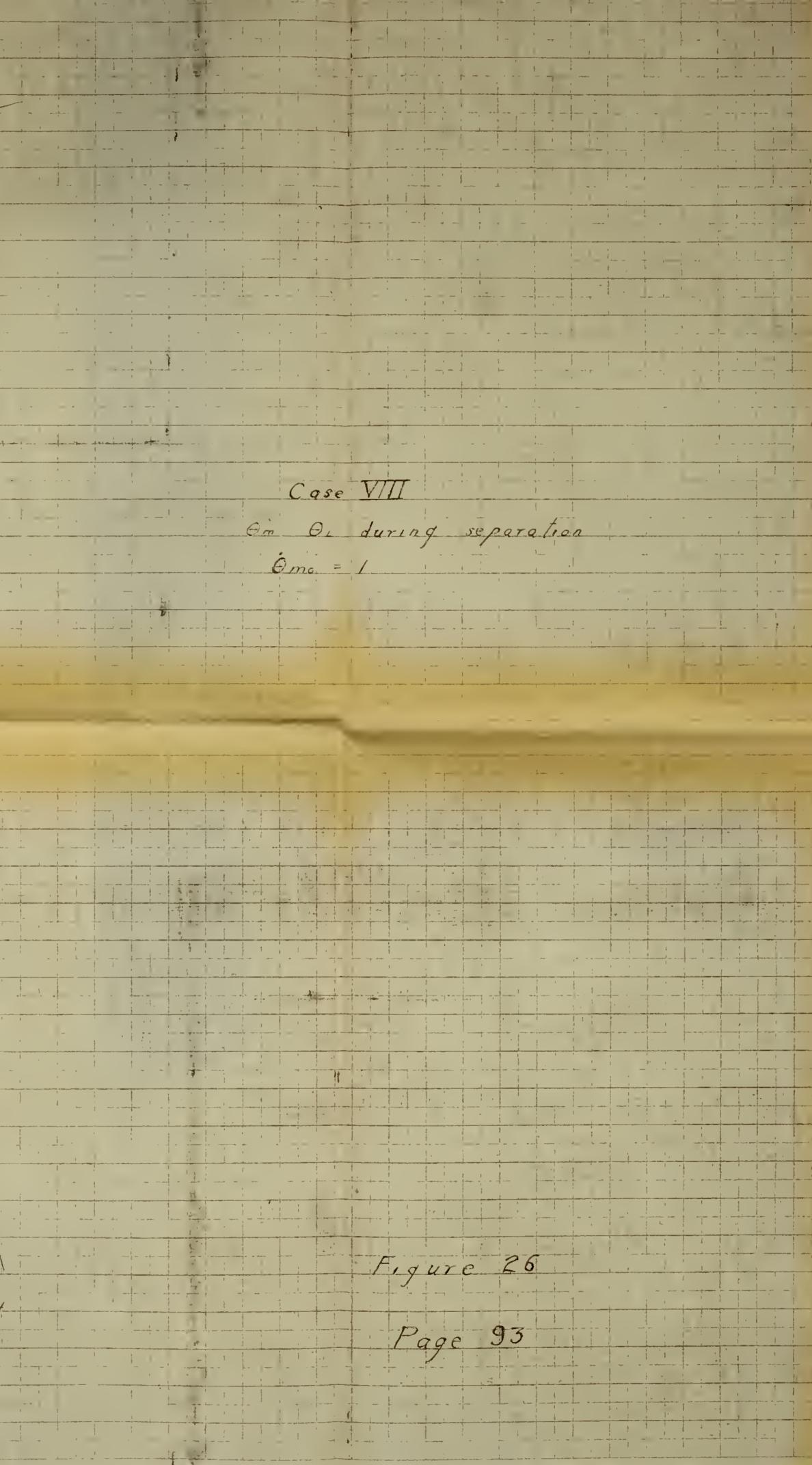
,

Ôm (2.34 e-1.5t =.706	29.1 e ¹²⁵ t 26.35	- 25.74 -25.74	Отт 096
.R	631	26.1	-25.74	2066
.6	543	25.8	-25.74	290
·Li	41	25.2	-25.74	38
.2	229	24.0	-25.74	394
.1	1123	22.6	-25.74	325
.08	0 ⁸ 65	22.13	-25.74	2958
.06	06085	21.46	-25.74	2602
.04	0318	20.35	-25.74	217
.02	00679	17.85	-25.74	1579

.

Table 30 continued

Omo	t	(1-e ¹²⁵⁷ .095	L) 8 (1-E''	25-1 275	$\theta_L - 1$	Ol
l	.80	.095	.76	275	.495	.905
.8	•°75	.1036	.83	275	.454	.7175
.6	.975	.1117	.916	275	• 3° 55	.532
.4	1.163	.135	1.08	275	.322	.346
.2	1.55	.176	1.11	275	.227	.1649
.1	2.025	.2235	1.79	275	.1515	.0777
.08	2.2	.240	1.92	275	.1316	.06075
.06	2.43	.262	2.098	275	.1095	.0442
. 74	2962	. 3705	2.44	275	.0866	.028
	3.90	. 386	3.087	275	.0562	.01227


Table 31

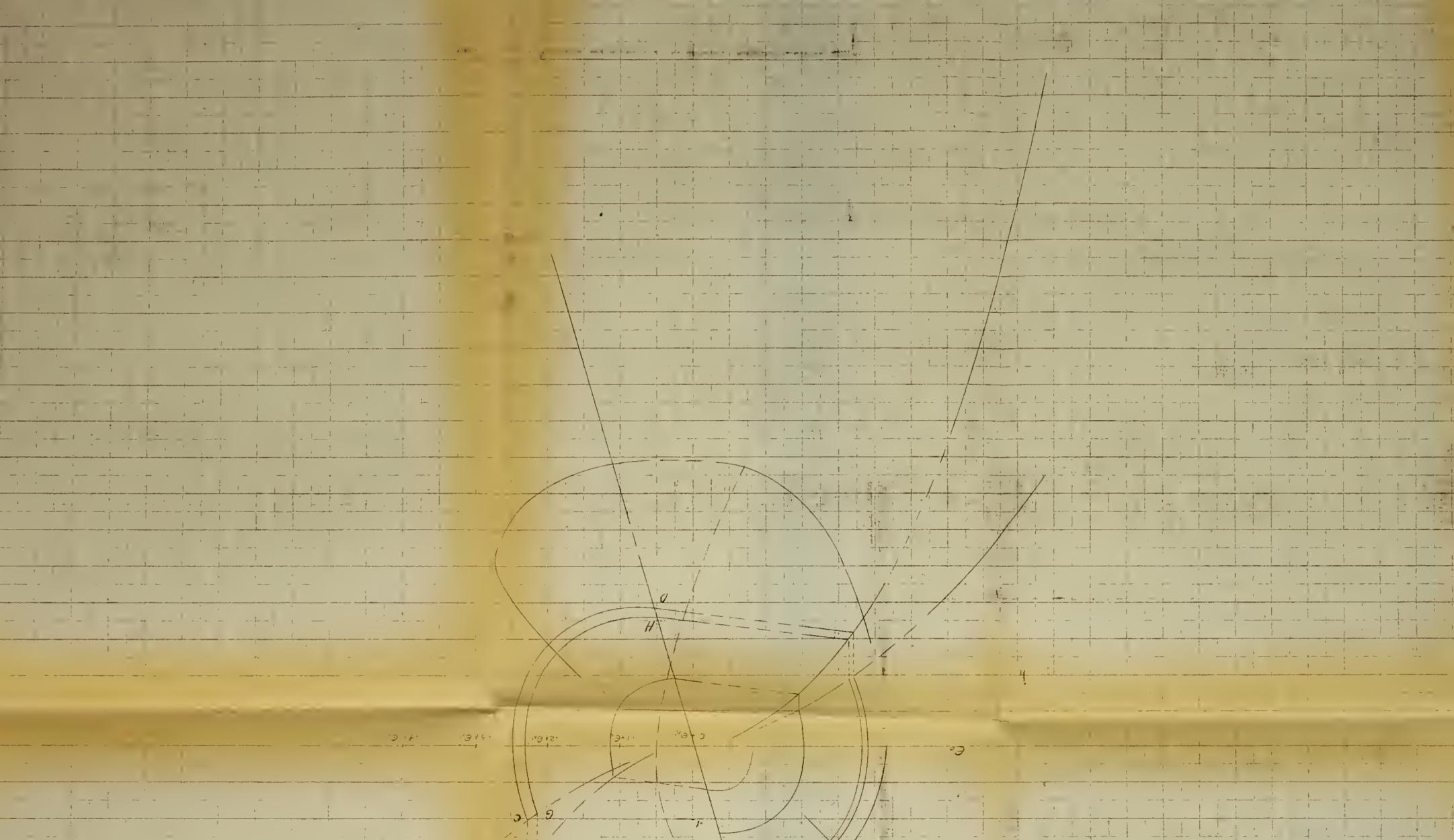
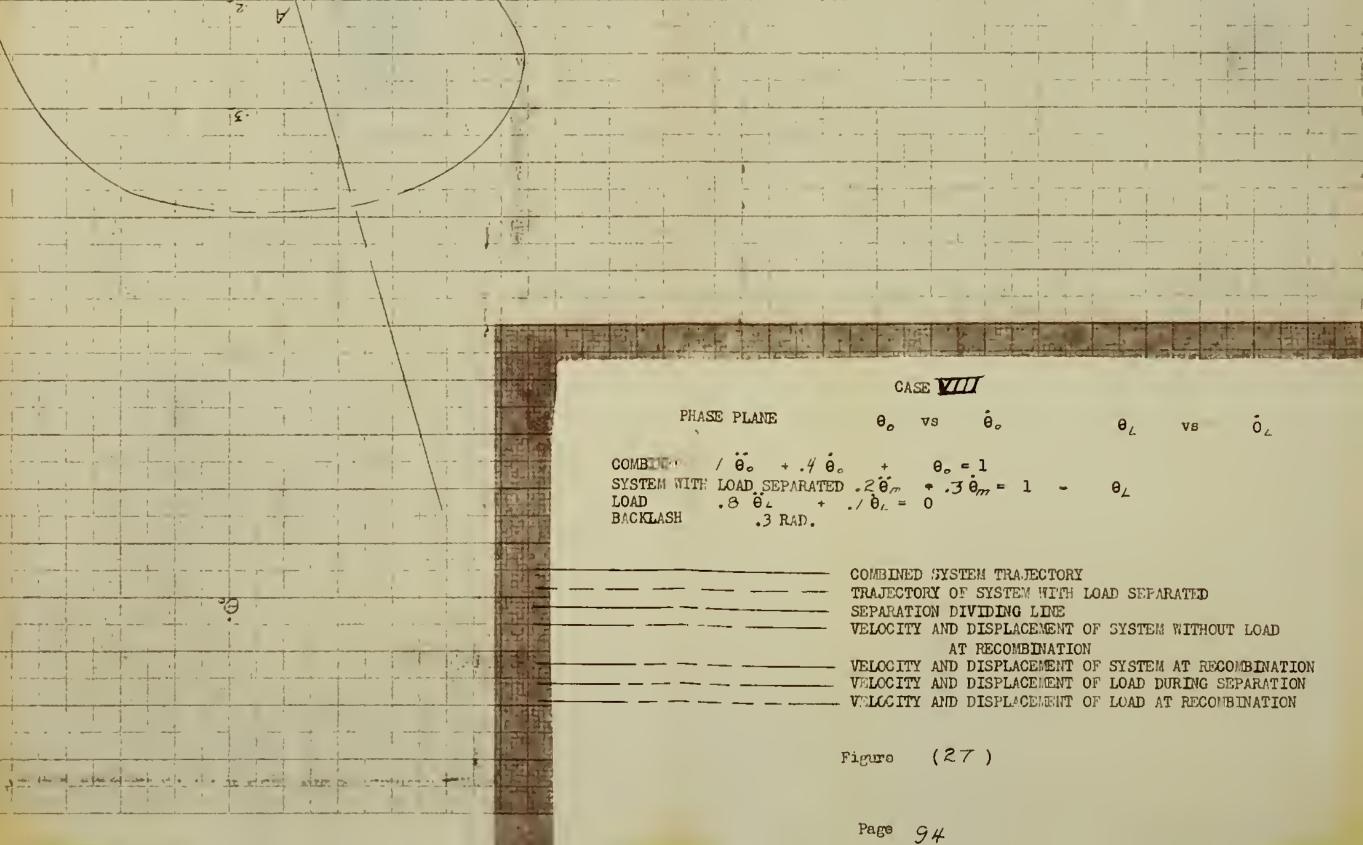

Omo 1 .	3688
• R	.3217
.F	.250
.4	.182
.?	.1027
.1	.0561
.08	.0459
.06	.035F
.04	.0259
.02	.0134

Figure 27 is the phase portrait of $\partial_{\sigma} \partial_{\sigma_{j}} \partial_{\rho_{j}} \partial_{\rho_{j}} \partial_{\rho_{j}}$ combined and separated.


A step input of .265 is seen to separate the load from the system at point A. A recombination occurs when the load has drifted to point B. Θ_o Θ_o for the recombined system originate from point C. Reseparation occurs at point D and the trajectory is seen to converge toward the limit cycle described by E, F, G, H. A step of .08 is seen to diverge toward the same limit cycle of magnitude .466.

O. 42.20 \mathcal{E}_{n} 1 1 1 1 - -- - 2 In the s ----1 - - -------1 -10 1-1-1-1 1.1 \$ }____ -++-+____ -. -12-1 - 1 4 2 25 1.5 0 .5 11 • • • • • Time (sec.) 1

E

1

1

B

- + -- ¹

1.1

E.

E I F

A

1

2

1 an 18 1

- 1

÷.,

- 8-1-

F

14. Conclusions.

By way of recapitulation, the eight considered cases were governed by the following equations.

Limit cycle None Case I $\theta_{o} \neq . \ \theta_{\Theta_{o}} \neq \theta_{o} = 1$ $\cdot 6 \Theta_m + .48 \Theta_m + \Theta_m = 1$ $4\theta_L + .32\theta_L = 0$ None Case II $\theta_{o} + \mathcal{L} \theta_{o} + \theta_{o} = 1$.50m + .20m + 0m = 1 $\cdot 5 \dot{\Theta}_{1} = 0$ Θ_{o} + .2 Θ_{o} + Θ_{o} = / Case III 1.030 $.5 \Theta_m + .2 \Theta_m = 1 - \Theta_L$ $.5\Theta_{L}=0$ Case V $\dot{\theta}_{0}$ + .4 $\dot{\theta}_{0}$ + θ_{0} = 1 -52 $.5\theta_m + .1\theta_m = 1 - \theta_L$ $\cdot 5 \ddot{\Theta}_{L} + \cdot 3 \dot{\Theta}_{L} = 0$ $\theta_0 + .4 \theta_0 + \theta_0 = 1$ Case VI .550 $\cdot 5 \Theta_m + \cdot 3 \Theta_m = 1 - \Theta_L$ $.5\dot{\theta}_{L} + ./\dot{\theta}_{L} = 0$ Case IV 00 + . 2 00 + 00 = 1 1.150 $\cdot 2 \Theta_m + \cdot 2 \Theta_m = 1 - \Theta_L$ $.8\theta_{L}=0$ Case VII A. + . 4 0. + 0. = 1 .250 $\cdot 2 \Theta_m + \cdot / \Theta_m = / - \Theta_L$ $.8 \stackrel{.}{\Theta}_{L} + .3 \stackrel{.}{\Theta}_{L} = 0$ Case VIII $\Theta_{\circ} + . 4 \Theta_{\circ} + \Theta_{\circ} = 1$.466 $\cdot 2 \Theta_m + \cdot 3 \Theta_m = 1 - \Theta_L$ $.8\ddot{\Theta}_{L} + ./\dot{\Theta}_{L} = 0$

Systems were prouped in the above order so that similar inertia ratios could be inspected as a group.

When backlash is outside the feedback loop, the system is ultimately stable and does not limit cycle, however it is subject to a residual steady state error in response to a step input, which error may be as great as the magnitude of the backlash.

wher backlash is enclosed in the feed back loop, a limit cycle will invariably result providing the system possesses viscous friction only.

The majority of cases considered exhibited $\Theta_L \Theta_L \Theta_L \Theta_L$ lines for recombination which approached the origin from slopes of opposite sign, as in the following example.

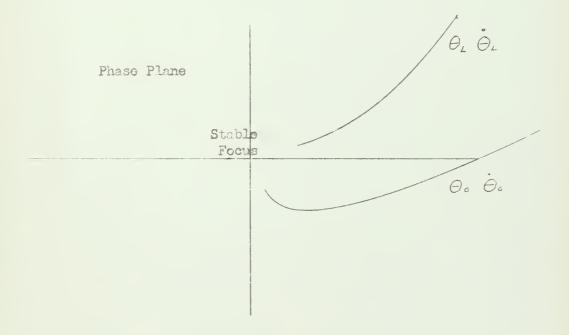
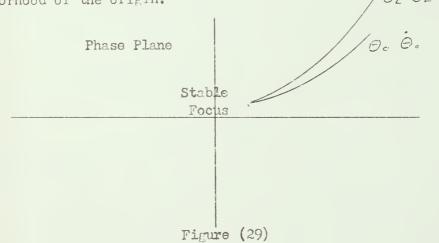



Figure (28)

It was originally believed that this difference in slopes was a necessary condition for the existence of a limit cycle and that the minimum value of the Θ_{o} Θ_{o} line was an indication of the magnitude of the limit cycle. Weither of these is the case. The limit cycle was always found to occur outside of the minimum value of the Θ_{o} Θ_{o} line. Case VIII showed the following configuration for the Θ_{L} Θ_{L} Θ_{o} Θ_{o} lines in the neighborhood of the origin. $/\Theta_{L}$

This is not inconsistent with previously considered cases and is simply an indication that the decrease in momentum for both load and open loop system are equal for decreasing values of $\hat{\Theta}mo$

The position of the system without the load, at recombination, for various initial separation values of $\hat{\Theta}_{no}$ possesses a characteristic downward bow as in the following:

Phase	Plane	Stable	Focu	5
				Om Öm

Figure (30)

It was or pinally believed that there might be some correlation between the existence and magnitude of the limit cycle and the position of minimum value of the $\Theta_m \, \hat{\Theta}_m$ recombination line, however no correlation was found to exist.

The shape and location of this $\Theta_m \Theta_m$ line varied from system to system with varying frictional and inertia distributions, however it always possessed a minimum value and its most characteristic feature was the upward hook in the third quadrant which corresponded to small initial Θ_m ovalues for the separated trajectories.

Of most significance are the graphs shown as figures (31) and (3?). Figure (31) is a plot of the magnitude of the limit cycle versus the

Friction of Load ratio

.

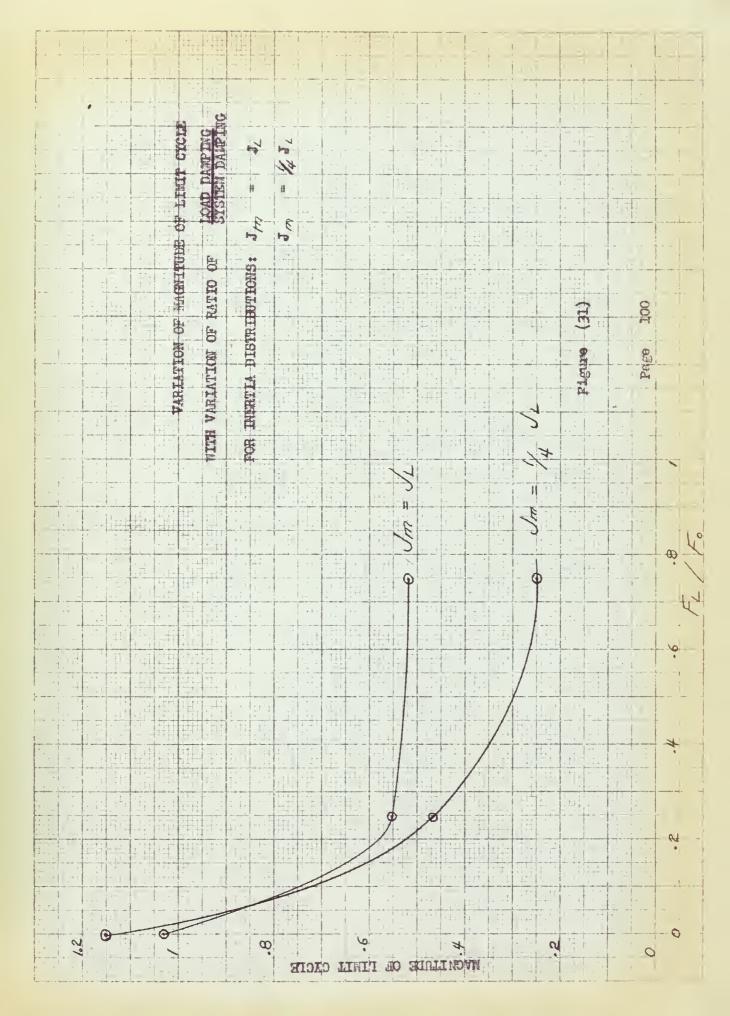
.

when (a) the inertia of the load (\int_{L}) was equal to the inertia of the system without the load (\int_{D7}) and when (b), $\int_{L} = 4 \int_{D7}$. The steep upward slope of the magnitude of the limit cycle with decreasing F_{L}/F_{0} values is of interest, clearly demonstrating that the change in frictional effects in the load is much more pronounced when the load possesses the greater part of the inertia. This is illustrated by the fact that the $\int_{L} = 4 \int_{T7}$ line crosses the $\int_{L} = \int_{T}$ inertia at low values of F_{L}/F_{0} .

Figure 32 is a plot of the magnitude of the limit cycle versus the J_{L}/J_{m} ratio for three different frictional distributions. This graph presents the same information as figure (31) but in a different manner. Most noteworthy is the change in slope of the $\frac{J_{L}}{J_{m}}/J_{m}$ line with change in frictional distribution. When the load possesses the greater part of the triction, an increase in the J_{L}/J_{m} ratio decreases the limit cycle

where some the lod possesses considerably less draping than the system, in increase in the magnitude of the limit cycle is the result of increasing the J_L/J_m ratio.

The overall system damping is seen to have the most effect in moving the $\frac{J_L/J_m}{m_{ag}, l_m, c_{\gamma c}}$ curves upward or downward while the individual F_L/F_m ratios determine the slope of those curves.

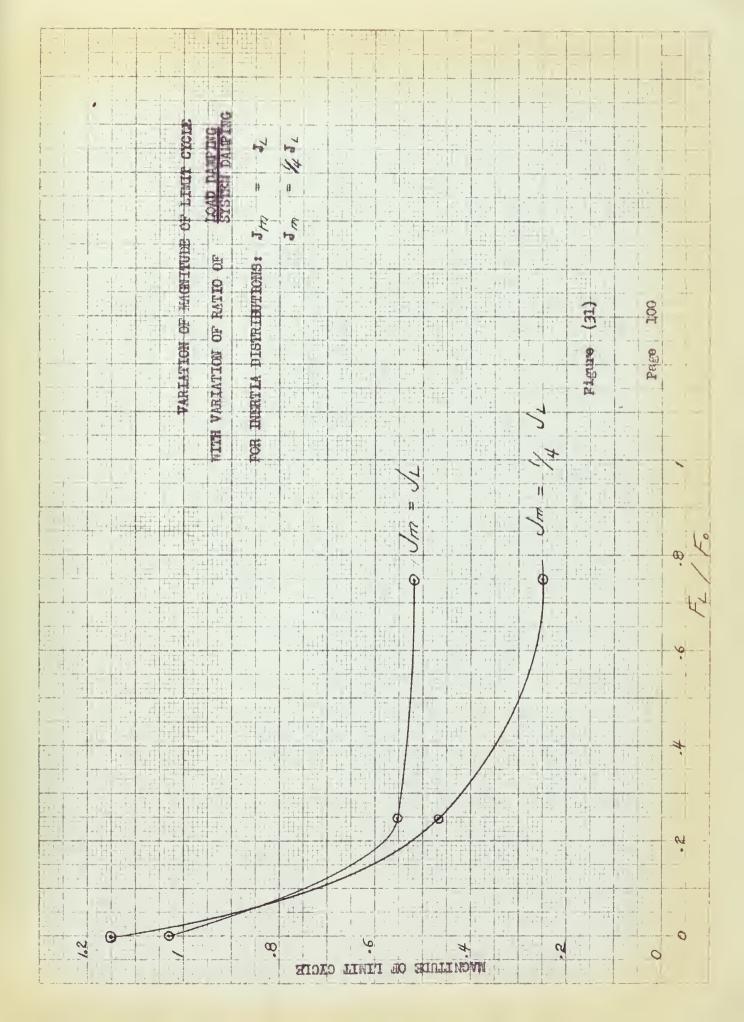

From this, the following generalizations for design may be made for the purpose of minimizing the magnitude of the limit cycle:

If the system damping is small, $\mathcal{Z} \not \omega_{77} \leq .2$, the J_L/J_m ratio should be made as small as possible when backlash is included inside the feedback loop.

If the system damping is somewhat greater, $2 \beta \omega_n \gg .4$, the J_L/J_m ratio should be made large, and a further reduction in the limit cycle may be achieved by placing the preponderance of damping in the load. This is quite feasible, and would be the case when a tachometer used in feedback is attached directly to the output shaft.

99

there s then the load possesses considerably less damping than the system, n increase in the magnitude of the limit cycle is the result of increasing the J_{I}/J_{m} ratio.


The overall system damping is seen to have the most effect in moving the $\frac{J_L}{J_m}$ curves upward or downward while the individual F_L/F_m ratios determine the slope of those curves.

From this, the following generalizations for design may be made for the purpose of minimizing the magnitude of the limit cycle:

If the system damping is small, $\mathcal{Z}_{W_{\mathcal{T}}} \leq \mathcal{Z}$, the J_{L}/J_{m} ratio should be made as small as possible when backlash is included inside the feedback loop.

If the system damping is somewhat greater, $2 \beta \omega_n \gg .4$, the J_L/J_m ratio should be made large, and a further reduction in the limit cycle may be achieved by placing the prependerance of damping in the load. This is quite feasible, and would be the case when a tachometer used in feedback is attached directly to the output shaft.

		CYCIE	TA RETTERN RATIOS :				
		MUNIT TO SUNTING	LOAD FOR DARFIE				
+		and the local of the party of the second	VALANTION OF DIST	11 E	3 F an	t . /	-
0			and the second second second				*
							5

.

(

